New, Exceptionally High-Grade Copper, Silver, Zinc and Germanium **Results at Graceland Critical Metals Prospect, Namibia**

- Up to 31.7% copper, 961g/t silver, 23.5% zinc & 351g/t germanium in Gossan 1 channel sampling
 - Further spectacular rockchips up to 42% copper from recently channel sampled Gossan 1 East
 - Exceptional new channel sampling and rockchip results received from the Graceland Prospect at the Otavi Mountain Land Critical Metals Province in northern Namibia (see location, Figure 1).
 - Results from channel sampling across the Gossan 1 outcrop include exceptional grades of up to 31.7% copper (Cu), 961 g/t silver (Ag), 15.3% zinc (Zn) and 79 g/t germanium (Ge) in Channel A6CL003; and up to 26.2% Cu, 563 g/t Ag, 23.5% Zn, 103 g/t Ge and 1,118 g/t antimony (Sb) in Channel ACL004; and 351 g/t Ge in Channel A6CL006 (see Figures 2, 3 and 4 for channel locations and intersections and Appendix 1a for all results).
 - The above exceptional surface results are included in the high-grade Gossan 1 channel sampling intersections below, which include:
 - 3m @ 11.2% Cu, 294 g/t Ag, 8.7% Zn, 45 g/t Ge in Gossan 1 Channel A6CL003 incl. 2.5m @ 13.3% Cu, 335 g/t Ag, 9.5% Zn, 51 g/t Ge incl. 0.5m @ 31.7% Cu, 961 g/t Ag, 15.3% Zn, 79 g/t Ge
 - 4m @ 7.1% Cu, 178 g/t Ag, 10.9% Zn, 3.3% Pb, 45 g/t Ge in Gossan 1 Channel A6CL004 incl. 2.0m @ 13.9% Cu, 339 g/t Ag, 10.3% Zn, 5.2% Pb, 86 g/t Ge incl. 1.5m @ 18.2% Cu, 433 g/t Ag, 13.7% Zn, 6.3% Pb, 103 g/t Ge, 516 g/t Sb incl. 0.5m @ 26.2% Cu, 563 g/t Ag, 23.5% Zn, 3.0% Pb, 103 g/t Ge, 1,118 g/t Sb
 - 1m @ 216 g/t Ge, 1.4% Zn, 8.1% Pb, incl. 0.5m @ 351 g/t Ge, 2.2% Zn, 12.4% Pb, 0.9% Cu in A6CL006
 - Wide intersections of high-grade zinc with lead and germanium were produced from channel sampling across the Gossan 2 outcrop (see Figure 2 for channel locations), including:
 - 8m @ 3.0% Zn incl. 2.0m @ 9.6% Zn, 2.7% Pb, 24 g/t Ge incl. 1.0m @ 14.6% Zn, 4.6% Pb, 44 g/t Ge (A6CL013)
 - 7m @ 3.5% Zn, 1.4% Pb incl. 6.0m @ 3.9% Zn, 1.6% Pb incl. 1.0m @ 9.6% Zn, 3.7% Pb, 27 g/t Ge (A6CL012)
 - Additional spectacular copper grades were produced from rockchip sampling of the Gossan 1 East outcrop, including 42% Cu in sample A6GS075 and 40.9% Cu, 154 g/t Ag in sample A6GS74 (see location, Figures 2, 3 & 4). Results are pending from channel sampling across this zone of strongly developed copper mineralisation across a 3-5m thickness, which has produced previous results of up to 7,792 g/t Ag, 47.3% Cu and 224 g/t Ge¹.
 - Results also pending from channel sampling of Gossan 1 West Extension, a 100m strike-length mineralised zone with copper mineralisation across 3-6m widths (see Appendix 2 for mineralisation descriptions).
 - Geophysical crew mobilised to site and commencing the detailed Induced Polarisation (IP) Resistivity survey across the priority high-grade gossan zones. Modelling of these profiles will be carried out while the survey proceeds to cover the entire 2km long mineralised corridor to define "Tsumeb-style" sulphide targets³.
 - The results of the channel and rockchip sampling will be combined with inversion modelling of any anomalies generated by the IP survey to define 3-D drilling targets for high-grade critical metals sulphide deposits similar to Tsumeb, which produced 27Mt @ 4.3% Cu, 10% Pb, 3.5% Zn, 95 g/t Ag and 50 g/t Ge4 and occurred at depth below a modest-sized surface gossan.

Golden Deeps CEO Jon Dugdale commented:

"These initial channel sampling results from Graceland have confirmed the exceptional grades of copper, silver and zinc at **Gossan 1**, as well as the highest germanium grade so far of **351 g/t germanium** and antimony to **1,130 g/t Sb**.

"There are more channel sampling results to come from other key gossan zones including **Gossan 1 East**, where new sampling results include an exceptional **42% copper**, in addition to previous spectacular results of up to **7,792 g/t silver 47.3% copper** and **224 g/t germanium**.

"The channel sampling results from the outcropping gossan zones has provided initial indications of the widths of high-grade critical metals mineralisation at surface at the Graceland Prospect. However the commencing IP survey is critical to detecting the potential bodies of high-grade critical metals sulphide mineralisation below these eroded surface gossans, akin to Tsumeb's geological signature below the modest sized surface gossan at this famous mine.

"We are eagerly awaiting the remaining results from our highly successful channel and rockchip sampling programs, and the results of the IP survey, so we can model drilling targets for 'Tsumeb-look-alike' high-grade copper-silver-zinc-lead-germanium deposits.

"The Company has identified several options for suitable drilling rigs to access the hilly sites at Graceland and is looking forward to further results from channel sampling and the IP survey so that initial drilling targets can be tested."

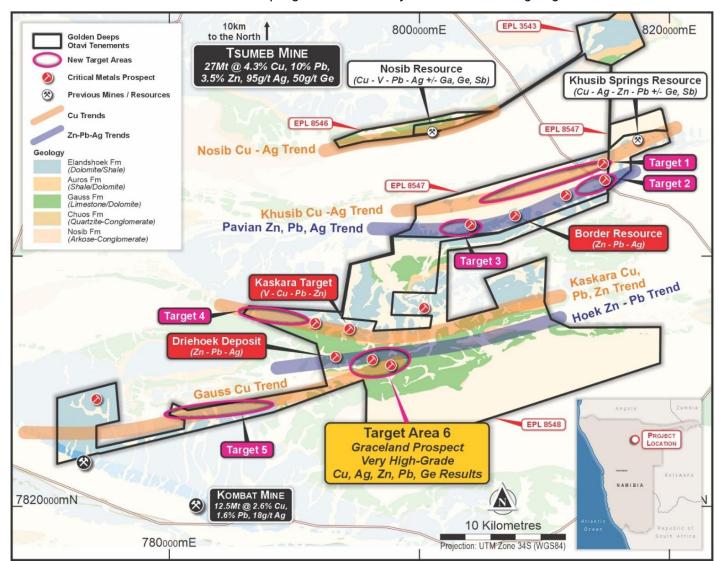


Figure 1: Central Otavi Project with key prospects, mineralised trends and Target Areas including Graceland Prospect

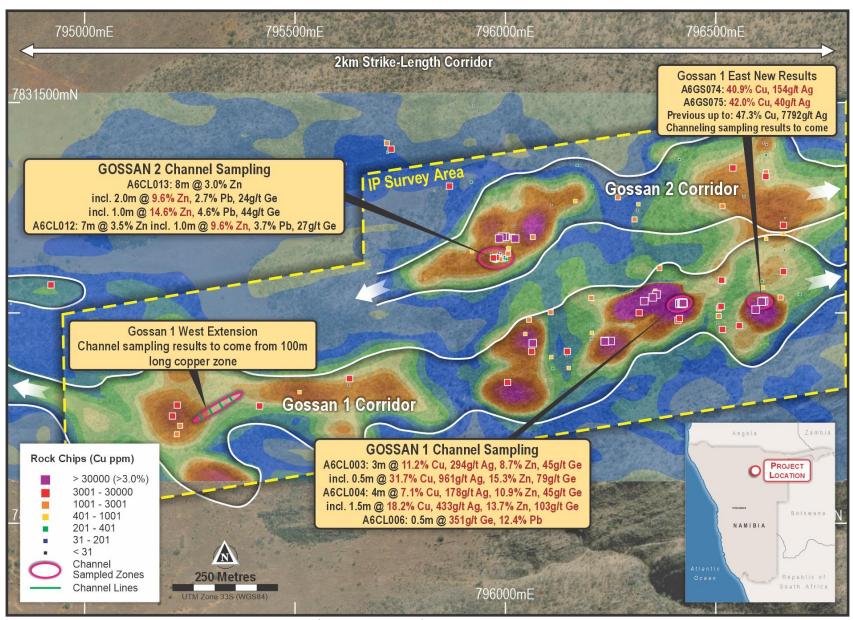


Figure 2: Graceland Prospect 2km x 1km highly mineralised copper (and Zn, Pb, Ag, Ge) corridor showing channel sampling intersections and new rockchips with IP Target Area

Golden Deeps Ltd ("Golden Deeps" or "the Company") (ASX: GED) is pleased to announce exceptional copper, silver, zinc and germanium channel sampling results from Gossan 1 and high-grade zinc channel sampling intersections from Gossan 2 at its Graceland Prospect in Target Area 6 of the recently acquired Central Otavi Project¹. Graceland is located in the World-Class Otavi Mountain Land Critical Metals District of north-east Namibia (see Figure 1).

The results from channel sampling across the **Gossan 1** outcrop included grades of up to **31.7% copper**, **961g/t silver**, **15.3% zinc** and **79g/t germanium** in channel A6CL003; up to **26.2% Cu**, **563 g/t Ag**, **23.5% Zn** and **103 g/t Ge** in channel A6CL004 and the **highest grade germanium assay yet received** from Graceland of **351g/t Ge** in A6CL006.

These exceptional results are from four diamond-saw cut channels across the **Gossan 1** outcrop and are included in length-weighted intersections summarised below (see Figure 2, 3 & 4 for locations, Table 1 for significant channel sampling intersections and Appendix 1a for all channel sampling results):

- 3m @ 11.2% Cu, 294 g/t Ag, 8.7% Zn, 45 g/t Ge in Gossan 1 Channel A6CL003 incl. 2.5m @ 13.3% Cu, 335 g/t Ag, 9.5% Zn, 51 g/t Ge incl. 0.5m @ 31.7% Cu, 961 g/t Ag, 15.3% Zn, 79 g/t Ge
- 4m @ 7.1% Cu, 178 g/t Ag, 10.9% Zn, 3.3% Pb, 45 g/t Ge in Gossan 1 Channel A6CL004 incl. 2.0m @ 13.9% Cu, 339 g/t Ag, 10.3% Zn, 5.2% Pb, 86 g/t Ge incl. 1.5m @ 18.2% Cu, 433 g/t Ag, 13.7% Zn, 6.3% Pb, 103 g/t Ge, 516 g/t Sb incl. 0.5m @ 26.2% Cu, 563 g/t Ag, 23.5% Zn, 3.0% Pb, 103 g/t Ge, 1,118 g/t Sb
- 3m @ 1.0% Cu, 43 g/t Ag, 4.6% Zn, 2.5% Pb, 31 g/t Ge in Gossan 1 Channel A6CL005 incl. 1.5m @ 1.7% Cu, 79 g/t Ag, 0.6% Zn, 4.8% Pb, 60 g/t Ge incl. 1.0m @ 0.4% Cu, 10 g/t Ag, 12.9% Zn incl. 0.5m @ 3.6% Cu, 80 g/t Ag, 5.9% Pb, 140 g/t Ge
- > 1m @ 1.4% Zn, 8.1% Pb, 216 g/t Ge incl. 0.5m @ 0.9% Cu, 2.2% Zn, 12.4% Pb, 351 g/t Ge in AC6CL006

The channel sampling of **Gossan 1** has been carried out across the 12m strike-length outcrop zone, which has been partially excavated to a shallow depth by historical workings on its western side, indicating that the original outcrop zone would have been over 20m strike-length prior to the shallow historical artisanal mining.

Initial IP-resistivity survey profiles will be carried out across the Gossan 1 zone in order to detect the primary sulphide deposit below the gossan and define and model a drilling target to test the full extent of sulphide mineralisation below the surface sulphide gossan and historical workings.

Results have also been received from channel sampling across the **Gossan 2** outcrop and included **high zinc grades of 14.6% Zn with 44 g/t Ge** in channel A6CL013 and **9.6% Zn** in channel A6CL012 (see locations Figures 2, 3 & 4). These results are included in the two widest and most significant channel sampling intersections across the **Gossan 2** outcrop as summarised below (see Table 1 for significant intersections and Appendix 1a, channel sampling results):

- > 8m @ 3.0% Zn incl. 2.0m @ 9.6% Zn, 2.7% Pb, 24 g/t Ge incl. 1.0m @ 14.6% Zn, 4.6% Pb, 44 g/t Ge (A6CL013)
- > 7m @ 3.5% Zn, 1.4% Pb incl. 6.0m @ 3.9% Zn, 1.6% Pb incl. 1.0m @ 9.6% Zn, 3.7% Pb, 27 g/t Ge (A6CL012)

Additional spectacular copper grades were also produced from rockchip sampling of the Gossan 1 East outcrop, including 42% Cu in sample A6GS075 and 40.9% Cu, 154 g/t Ag in sample A6GS74 (see Figures 2, 3 & 4 for locations and Appendix 1b for details of all new rockchip sample results). Four strongly-mineralised channels have been cut and sampled across the Gossan 1 East outcrop, which include 3-5m wide zones of chalcocite and malachite mineralisation (see Image 1, channel in copper mineralisation, and Appendix 2 for mineralisation descriptions). Results are pending from the channel sampling across this zone, which has produced previous rockchip results of up to 7,792 g/t Ag, 47.3% Cu and 224 g/t Ge¹.

Results are also pending from four 20m spaced diamond-saw cut channels across the 100m strike-length **Gossan 1 West Extension** outcrop (see Figure 2 for location). **Significant copper mineralisation across 3-6m widths has been identified - including chalcocite (Cu₂S) clots, malachite (copper carbonate) and <u>native copper</u> (see Image 2 – native copper mineralisation) (see Appendix 2 for mineralisation descriptions).**

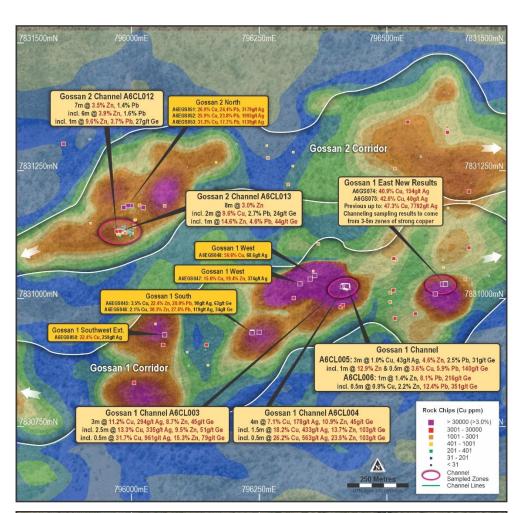


Figure 3: Graceland Prospect, new channel sampling and rockchip locations and results with previous rockchip sample highlights on Cu soil sampling contours

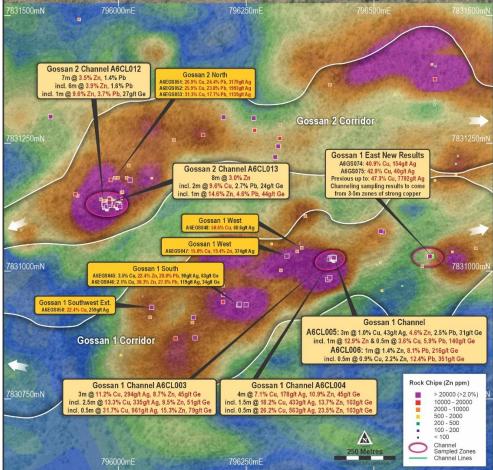


Figure 4: Graceland Prospect, new channel sampling and rockchip locations and results with previous rockchip sample highlights on Zn soil sampling contours

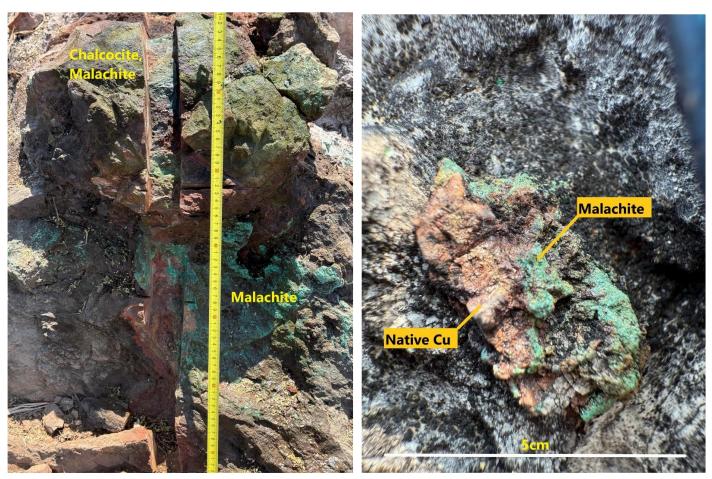


Image 1: Gossan 1 East channel in massive copper mineralisation. Image 2 Gossan 1 West Ext. native copper & malachite in dolomite.

The Terratec geophysical crew has been mobilised to Graceland and is commencing the **detailed IP-Resistivity survey**¹⁰, which will be carried out over the next three weeks. The survey will initially include 900m long north-south profiles across the main **Gossan 1** and **Gossan 1** East outcrops and the **Gossan 2** corridor. These profiles will be modelled while the survey continues with 900m long north-south oriented IP-Resistivity survey lines spaced at 200m east-west intervals along the entire 2km strike-length mineralised corridor (see Figure 2). The survey has been innovatively designed to simultaneously detect both near surface sulphide zones, as well as deeper 'Tsumeb style' Cu-Ag-Zn-Pb-Ge sulphide targets to 300m depth.

The results of the IP survey will be modelled and combined with rockchip and channel sampling results and detailed surface topographic data to produce a 3-D GIS model and define drilling targets for high-grade "Tsumeb-type" Cu-Zn-Pb-Ag-Ge (+/- Sb, Ga) sulphide deposits.

Several drilling contractors have been identified with suitable rigs to access the hilly sites to test below the identified high-grade surface occurrences. Final drilling site locations will be selected once the IP survey has been completed and any identified IP anomalies have been modelled and integrated with surface rockchip and channel sampling results and detailed topographic data.

Drill site access and site preparation will be established based on rig type and availability and in consultation with the selected drilling contractor(s).

Table 1: Graceland Prospect Channel Sampling Significant Intersections, Gossan 1 and Gossan 2

Gossan	Channel	From	То	Interval	Cu%	Ag g/t	Zn%	Pb%	Ge g/t	Sb g/t
				\$/kg	\$10.38	\$1,500	\$2.92	\$2.00	\$3,075	\$60
Gossan 1	A6CL003	2.5	5.5	3.0	11.2	294	8.7	1.1	45	151
	incl.	2.5	5.0	2.5	13.3	335	9.5	1.3	51	179
	incl.	4.0	4.5	0.5	31.7	961	15.3	0.5	79	53
Gossan 1	A6CL004	3.5	7.5	4.0	7.1	178	10.9	3.3	45	204
	incl.	4.0	7.0	3.0	9.3	229	11.0	3.6	58	268
	incl.	4.0	6.0	2.0	13.9	339	10.3	5.2	86	398
	incl.	4.5	6.0	1.5	18.2	433	13.7	6.3	103	516
	incl.	5.5	6.0	0.5	26.2	563	23.5	3.0	103	1,118
Gossan 1	A6CL005	3.5	6.5	3.0	1.0	43	4.6	2.5	31	25
	incl.	3.5	5.0	1.5	1.7	79	0.6	4.8	60	47
	incl.	5.5	6.5	1.0	0.4	10	12.9	0.3	2	4
	incl.	4.0	4.5	0.5	3.6	80	0.4	5.9	140	118
Gossan 1	A6CL006	4.5	5.5	1.0	0.59	0.19	1.4	8.1	216	155
	incl.	4.5	5.0	0.5	0.88	0.05	2.2	12.4	351	218
Gossan 2	A6CL012	3.0	10.0	7.0	0.03	5.9	3.5	1.4	9	2.4
	incl.	4.0	10.0	6.0	0.04	6.7	3.9	1.6	10	2.7
	incl.	5.0	6.0	1.0	0.08	20.0	9.6	3.7	27	9.2
Gossan 2	A6CL013	6.0	14.0	8.0	0.09	8.1	3.0	1.0	8	2.1
	incl.	6.0	8.0	2.0	0.04	12.7	9.6	2.7	24	2.8
	incl.	6.0	7.0	1.0	0.04	19.6	14.6	4.6	44	3.2

The channel sampling intersections achieved in Channel A6CL003 and Channel A6CL004, detailed in Table 1, have exceeded the criteria in Schedule 6 of the Share Sale Agreement pertaining to the purchase of 80% of Namex Pty Ltd (Namex), requiring the issue of Tranche A shares to the Vendor of Namex (See Appendix 2 of the Golden Deeps Ltd (ASX:GED) announcement on 1 April 2025, "Acquisition of Central Otavi Critical Metals Project")⁵.

About Golden Deeps Otavi Mountain Land Critical Metals Projects

Golden Deeps, through its 80% owned subsidiaries Huab Energy Pty Ltd (Huab) and Metalex Mining and Exploration Pty Ltd (Metalex), holds six Exclusive Prospecting Licences (EPLs) covering **over 440km²** in **Namibia's world-class Otavi Mountain Land Metallogenic Belt** (see Figure 3 below).

The Otavi Mountain Land is host to major, historically mined high-grade polymetallic deposits such as the world-class **Tsumeb mine**, which produced **27Mt** @ **4.3% Cu**, **10% Pb**, **3.5% Zn**, **95 g/t Ag** and **50 g/t Ge**⁴, and the **Kombat mine**, with recorded historical production of **12.5Mt** @ **2.6% Cu**, **1.6% Pb**, **18 g/t Ag**⁶ (see Figure 5)

Golden Deeps has several advanced base and critical-metals projects in the Otavi Mountain Land. Established resources and prospects include high-grade, supergene, vanadium +/- copper, lead, zinc and silver Mineral Resources as well as primary copper-silver-zinc-lead (+/- Ge, Ga, Sb) sulphide deposits (see Figure 5).

The Company has defined new Mineral Resources for the Abenab high-grade vanadium (lead, zinc) project⁷, the Nosib vanadium-copper-lead-silver (gallium) deposit⁵ and the Khusib Springs silver-copper (zinc-lead) deposit⁸.

The Company recently announced high-grade gallium with copper, vanadium, lead, silver and highly anomalous germanium and antimony results⁹ from surface at the **Nosib discovery** (Figure 5), and further metallurgical work is planned to enhance recovery of these critical metals before development studies are finalised.

Golden Deeps recently acquired an 80% interest in the Central Otavi Critical Metals Project⁵ (see Figures 1 and 5). The Central Otavi Project⁵ includes a Zn-Pb-Ag Mineral Resource at the Border prospect; advanced exploration prospects at the Driehoek (Zn-Pb-Ag) and Kaskara (V-Cu-Pb-Zn, Ge), and multiple target areas for 'Tsumeb type' Cu-Pb-Zn-Ag-Ge deposits with gallium and antimony potential.

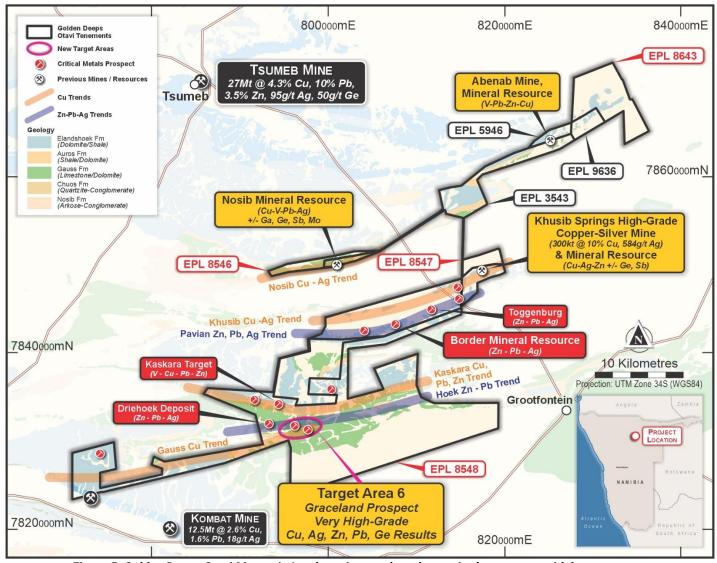


Figure 5: Golden Deeps Otavi Mountain Land previous and newly acquired tenements with key prospects

The Company has commenced an aggressive exploration program in priority target areas on the Central Otavi Project, with initial focus in areas that show "Tsumeb-type" Cu-Ag-Zn-Pb (+/- Ge, Ga, Sb) potential (see Figure 1).

The initial area of exploration, Target Area 6 (**Graceland Prospect**), has **produced exceptional copper**, **silver**, **zinc**, **lead and germanium results from rockchip sampling of multiple gossan and sulphide occurrences**^{1,2}. These outstanding results are from a large mineralised corridor defined by highly anomalous Cu-Zn-Pb-Ag soil sampling results over 2km in a northeast-southwest direction and 1km wide in a northwest-southeast direction (see Figure 2).

Trenching and channel sampling across the most significant gossan and sulphide outcrops has already produced significant high-grade intersections, with further results still pending.

A detailed IP-Conductivity survey will be carried out over the next three weeks aiming to simultaneously detect near surface sulphide deposits as well as deeper targets to 300m depth¹⁰.

The surface rockchip and channel sampling results and anomalies generated by the IP survey will be modelled to define drilling targets for multiple "Tsumeb-like" high-grade Cu, Ag, Zn, Pb, Ge (+/- Sb, Ga) bearing sulphide discoveries.

The mineralisation identified to date at Graceland includes high-grade copper, silver, zinc, lead as well as germanium and antimony, which is an analogous suite of metals to the world-class Tsumeb deposit, 20km to the north (see Figure's 1 and 5). Tsumeb produced **27Mt** @ **4.3% Cu**, **10% Pb**, **3.5% Zn**, **95 g/t Ag & 50 g/t Ge**, with **Ga and Sb by products**⁴. The United States Geological Survey (USGS) has recently proposed adding copper, silver and lead to the US Critical Minerals list. Zinc, germanium, gallium (Ga) and antimony (Sb) are already on the US Critical Minerals list¹¹.

The addition of copper, silver and lead to the US Critical Minerals list means that all of the high-grade elements identified in rockchip sampling at the Graceland Prospect will be classified as critical, high-demand, metals in the US. Copper, silver and germanium in particular are critical components of renewable energy systems and photo-voltaic (solar energy)

cells. Germanium is also a key semi-conductor for transistors and computer chips. In December 2024 China banned the export of critical minerals including **germanium** as well as gallium and antimony to the United States, which has caused the US and other markets to seek other sources of these critical metals.

References

- ¹ Golden Deeps Ltd ASX 21 August 2025. Further Spectacular Copper Silver with Germanium in Otavi.
- ² Golden Deeps Ltd ASX 06 August 2025. Exceptional Otavi Copper Silver Zinc and Germanium Grades.
- ² Golden Deeps Ltd ASX 01 September 2025. IP Survey for Cu Ag Zn Pb Ge Sulphide Targets at Graceland.
- ⁴ Tsumeb Mine (Ongopolo Mine), Tsumeb, Oshikoto Region, Namibia, https://www.mindat.org/loc-2428.html
- ⁵ Golden Deeps Ltd (ASX:GED) 1 April 2025. Acquisition of Central Otavi Critical Metals Project.
- ⁶ Kombat Mine, Namibia. Porter Geo Database: http://www.portergeo.com.au/database/mineinfo.asp?mineid=mn2905.
- ⁷ Golden Deeps Ltd ASX 25 June 2024: New Mineral Resources for Otavi V-Cu-Pb-Zn-Ag Deposits.
- ⁸ Golden Deeps Ltd ASX 22 October 2024: New Silver-Copper Resource Highlights Khusib Potential.
- ⁹ Golden Deeps Ltd ASX 09 April 2025: Further High-Grade Gallium Identified at Nosib.
- ¹⁰ Golden Deeps Ltd ASX 01 September 2025. IP survey for Cu Ag Zn Pb Ge Sulphide Targets at Graceland..
- ¹¹ Golden Deeps Ltd ASX 12 September 2025. Further Rich Copper mineralisation Identified at Graceland.

This announcement was authorised for release by the Board of Directors.

ENDS

Please refer to the Company's website or contact:

Jon Dugdale Chief Executive Officer Golden Deeps Limited +61 (08) 9481 7833 Michael Muhling or Tanya Newby Joint Company Secretaries Golden Deeps Limited +61 (08) 9481 7833

Cautionary Statement regarding Forward-Looking Information:

This document contains forward-looking statements concerning Golden Deeps Ltd. Forward-looking statements are not statements of historical fact and actual events and results may differ materially from those described in the forward-looking statements as a result of a variety of risks, uncertainties and other factors. Forward-looking statements are inherently subject to business, economic, competitive, political and social uncertainties and contingencies. Many factors could cause the Company's actual results to differ materially from those expressed or implied in any forward-looking information provided by the Company, or on behalf of, the Company. Such factors include, among other things, risks relating to additional funding requirements, metal prices, exploration, development and operating risks, competition, production risks, regulatory restrictions, including environmental regulation and liability and potential title disputes. Forward looking statements in this document are based on the company's beliefs, opinions and estimates of Golden Deeps Ltd as of the dates the forward-looking statements are made, and no obligation is assumed to update forward looking statements if these beliefs, opinions and estimates should change or to reflect other future developments.

Competent Person Statement:

The information in this report that relates to exploration results, Mineral Resources and metallurgical information has been reviewed, compiled and fairly represented by Mr Jonathon Dugdale. Mr Dugdale is the Chief Executive Officer of Golden Deeps Ltd and a Fellow of the Australian Institute of Mining and Metallurgy ('FAusIMM'). Mr Dugdale has sufficient experience, including over 37 years' experience in exploration, resource evaluation, mine geology and finance, relevant to the style of mineralisation and type of deposits under consideration to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee ('JORC') Australasian Code for Reporting of Exploration Results, Minerals Resources and Ore Reserves. Mr Dugdale consents to the inclusion in this report of the matters based on this information in the form and context in which it appears. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

ASX Listing rules Compliance:

In preparing this announcement the Company has relied on the announcements previously made by the Company as listed under "References". The Company confirms that it is not aware of any new information or data that materially affects those announcements previously made, or that would materially affect the Company from relying on those announcements for the purpose of this announcement.

APPENDIX 1a: Channel Sampling results from Gossan 1 and Gossan 2, Graceland Prospect

									_						
Line ID	Sample ID	mFrom	mTo	Int.	Easting m	Northing m	Cu ppm	Cu%	Zn ppm	Zn%	Pb ppm	Pb%	Ag ppm	Ge ppm	Sb ppm
A6CL001	A6CS001	0	0.5	0.5	796414.3	7831023.7	7,337	0.734	6,762	0.676	341	0.034	27.2	2	37.1
A6CL001	A6CS002	0.5	1	0.5	796414.3	7831024.2	2,787	0.279	2,176	0.218	1,620	0.162	5.2	2	7.8
A6CL001	A6CS003	1	1.5	0.5	796414.2	7831024.7	414	0.041	608	0.061	279	0.028	2.5	1	1.4
A6CL001	A6CS004	1.5	2	0.5	796414.1	7831025.2	1,968	0.197	994	0.099	944	0.094	7.8	<1	2.8
A6CL001	A6CS005	2	2.5	0.5	796414.0	7831025.7	81	0.008	666	0.067	232	0.023	0.4	1	<0.5
A6CL001	A6CS006	2.5	3	0.5	796414.0	7831026.2	121	0.012	8,590	0.859	5,943	0.594	1.2	2	<0.5
A6CL001	A6CS007	3	3.5	0.5	796413.9	7831026.7	32	0.003	999	0.100	680	0.068	0.2	<1	<0.5
A6CL001	A6CS008	3.5	4	0.5	796413.8	7831027.2	52	0.005	1,956	0.196	145	0.015	0.1	<1	<0.5
A6CL002	A6CS009	0	0.5	0.5	796416.6	7831022.1	2,514	0.251	2,934	0.293	231	0.023	5.0	2	43.9
A6CL002	A6CS011	3	3.5	0.5	796416.2	7831025.1	2,464	0.246	5,715	0.572	328	0.033	6.2	2	14.7
A6CL002	A6CS012	3.5	4	0.5	796416.1	7831025.6	484	0.048	2,472	0.247	85	0.009	2.0	1	1.5
A6CL002	A6CS013	4	4.5	0.5	796416.0	7831026.1	56	0.006	1,924	0.192	386	0.039	0.4	<1	<0.5
A6CL002	A6CS014	4.5	5	0.5	796415.9	7831026.5	74	0.007	1,315	0.132	9,008	0.901	1.7	2	<0.5
A6CL002	A6CS015	5	5.5	0.5	796415.9	7831027.0	30	0.003	6,002	0.600	246	0.025	0.1	<1	0.7
A6CL002	A6CS016	5.5	6	0.5	796415.8	7831027.5	<1	<0.001	704	0.070	55	0.006	0.1	<1	<0.5
A6CL003	A6CS017	0	0.5	0.5	796418.9	7831020.5	31	0.003	158	0.016	29	0.003	< 0.05	<1	<0.5
A6CL003	A6CS018	0.5	1	0.5	796418.8	7831021.0	45	0.005	95	0.010	26	0.003	0.2	<1	<0.5
A6CL003	A6CS019	1	1.5	0.5	796418.7	7831021.5	65	0.007	103	0.010	131	0.013	0.3	1	<0.5
A6CL003	A6CS021	1.5	2	0.5	796418.7	7831022.0	99	0.010	110	0.011	153	0.015	0.2	<1	<0.5
A6CL003	A6CS022	2	2.5	0.5	796418.6	7831022.5	4,073	0.407	<2	<0.002	1,004	0.100	4.4	4	32.8
A6CL003	A6CS023	2.5	3	0.5	796418.5	7831022.9	59,636	5.964	478	0.048	3,866	0.387	148.8	27	165
A6CL003	A6CS024	3	3.5	0.5	796418.4	7831023.4	177,169	17.717	2,380	0.238	16,154	1.615	67.0	34	419.6
A6CL003	A6CS025	3.5	4	0.5	796418.4	7831023.9	29,653	2.965	57,135	5.714	5,632	0.563	115.4	18	111.8
A6CL003	A6CS026	4	4.5	0.5	796418.3	7831024.4	317,038	31.704	152,600	15.260	4,871	0.487	960.5	79	53.2
A6CL003	A6CS027	4.5	5	0.5	796418.2	7831024.9	79,189	7.919	261,216	26.122	33,318	3.332	384.4	96	145.8
A6CL003	A6CS028	5	5.5	0.5	796418.1	7831025.4	8,970	0.897	47,660	4.766	4,497	0.450	86.6	13	12
A6CL003	A6CS029	5.5	6	0.5	796418.1	7831025.9	813	0.081	250,785	25.079	3,503	0.350	3.1	3	5.7
A6CL003	A6CS031	6	6.5	0.5	796418.0	7831026.4	205	0.021	30,449	3.045	2,853	0.285	1.3	<1	21.3

Line ID	Sample ID	mFrom	mTo	Int.	Easting m	Northing m	Cu ppm	Cu%	Zn ppm	Zn%	Pb ppm	Pb%	Ag ppm	Ge ppm	Sb ppm
A6CL003	A6CS032	6.5	7	0.5	796417.9	7831026.9	1,370	0.137	9,083	0.908	361	0.036	4.6	1	9.1
A6CL003	A6CS033	7	7.5	0.5	796417.8	7831027.4	76	0.008	5,381	0.538	75	0.008	0.3	<1	3.2
A6CL003	A6CS034	7.5	8	0.5	796417.7	7831027.9	73	0.007	2,648	0.265	87	0.009	0.5	<1	0.7
A6CL004	A6CS035	0	0.5	0.5	796420.9	7831020.8	351	0.035	2,828	0.283	79	0.008	0.7	<1	2.6
A6CL004	A6CS036	0.5	1	0.5	796420.8	7831021.3	118	0.012	456	0.046	74	0.007	0.3	<1	<0.5
A6CL004	A6CS037	1	1.5	0.5	796420.7	7831021.8	110	0.011	460	0.046	177	0.018	0.2	<1	1.3
A6CL004	A6CS038	1.5	2	0.5	796420.6	7831022.3	125	0.013	347	0.035	1,082	0.108	0.3	1	0.6
A6CL004	A6CS039	2.5	3	0.5	796420.5	7831023.3	435	0.044	299	0.030	644	0.064	0.2	1	0.6
A6CL004	A6CS040	2.5	3	0.5	796420.5	7831023.3	556	0.056	207	0.021	1,526	0.153	0.9	1	2.3
A6CL004	A6CS041	3	3.5	0.5	796420.4	7831023.8	1,288	0.129	413	0.041	2,609	0.261	1.1	4	12.6
A6CL004	A6CS042	3.5	4	0.5	796420.3	7831024.3	9,123	0.912	990	0.099	46,079	4.608	53.4	8	16.3
A6CL004	A6CS043	4	4.5	0.5	796420.3	7831024.8	11,247	1.125	1,170	0.117	17,621	1.762	53.7	33	43.6
A6CL004	A6CS044	4.5	5	0.5	796420.2	7831025.3	163,018	16.302	3,628	0.363	50,074	5.007	484.9	89	144.8
A6CL004	A6CS045	5	5.5	0.5	796420.1	7831025.8	119,477	11.948	172,103	17.210	109,625	10.963	252.1	118	285.9
A6CL004	A6CS046	5.5	6	0.5	796420.0	7831026.3	262,098	26.210	234,645	23.465	30,233	3.023	563.3	103	1117.9
A6CL004	A6CS047	6.5	7	0.5	796419.9	7831027.2	4,268	0.427	245,594	24.559	9,101	0.910	17.9	7	15.5
A6CL004	A6CS048	7	7.5	0.5	796419.8	7831027.7	586	0.059	212,288	21.229	901	0.090	2.3	3	5.2
A6CL004	A6CS049	7.5	8	0.5	796419.7	7831028.2	375	0.038	53,412	5.341	214	0.021	0.9	1	2.5
A6CL004	A6CS050			0			158	0.016	4,556	0.456	4,084	0.408	180.3	3	23.9
A6CL005	A6CS051	0	0.5	0.5	796422.8	7831021.2	371	0.037	1,355	0.136	183	0.018	0.7	<1	1
A6CL005	A6CS052	0.5	1	0.5	796422.8	7831021.7	407	0.041	925	0.093	243	0.024	0.5	<1	1.1
A6CL005	A6CS053	1	1.5	0.5	796422.7	7831022.2	1,053	0.105	2,739	0.274	285	0.029	1.3	<1	1.1
A6CL005	A6CS054	1.5	2	0.5	796422.6	7831022.7	4,832	0.483	673	0.067	704	0.070	11.4	<1	22.7
A6CL005	A6CS055	2	2.5	0.5	796422.5	7831023.1	1,492	0.149	1,003	0.100	4,251	0.425	2.6	2	4.3
A6CL005	A6CS056	2.5	3	0.5	796422.5	7831023.6	1,529	0.153	1,184	0.118	4,529	0.453	2.7	3	5.6
A6CL005	A6CS057	3	3.5	0.5	796422.4	7831024.1	2,274	0.227	1,276	0.128	14,737	1.474	10.2	4	6.3
A6CL005	A6CS058	3.5	4	0.5	796422.3	7831024.6	7,804	0.780	6,206	0.621	83,846	8.385	67.2	36	19.7
A6CL005	A6CS059	4	4.5	0.5	796422.2	7831025.1	35,809	3.581	4,025	0.403	58,886	5.889	80.2	140	118
A6CL005	A6CS061	4.5	5	0.5	796422.1	7831025.6	7,100	0.710	7,648	0.765	2,060	0.206	88.5	5	3.8
A6CL005	A6CS062	5.5	6	0.5	796422.0	7831026.6	4,869	0.487	92,318	9.232	3,632	0.363	12.1	2	5.7

Line ID	Sample ID	mFrom	mTo	Int.	Easting m	Northing m	Cu ppm	Cu%	Zn ppm	Zn%	Pb ppm	Pb%	Ag ppm	Ge ppm	Sb ppm
A6CL005	A6CS063	6	6.5	0.5	796421.9	7831027.1	2,524	0.252	165,892	16.589	2,249	0.225	8.0	2	3
A6CL005	A6CS064	6.5	7	0.5	796421.8	7831027.6	106	0.011	87	0.009	177	0.018	0.4	<1	1.5
A6CL005	A6CS065	7	7.5	0.5	796421.8	7831028.1	62	0.006	6,601	0.660	107	0.011	0.2	<1	0.7
A6CL005	A6CS066	7.5	8	0.5	796421.7	7831028.6	203	0.020	3,212	0.321	122	0.012	1.0	<1	0.9
A6CL006	A6CS067	0	0.5	0.5	796424.8	7831021.5	1,221	0.122	1,989	0.199	138	0.014	7.0	<1	4.5
A6CL006	A6CS068	0.5	1	0.5	796424.7	7831022.0	1,730	0.173	593	0.059	498	0.050	8.4	<1	7.5
A6CL006	A6CS069	1	1.5	0.5	796424.7	7831022.5	3,605	0.361	507	0.051	511	0.051	15.9	<1	7.5
A6CL006	A6CS071	1.5	2	0.5	796424.6	7831023.0	144	0.014	420	0.042	95	0.010	0.7	<1	1.2
A6CL006	A6CS072	2.5	3	0.5	796424.4	7831024.0	1,936	0.194	269	0.027	1,350	0.135	3.2	2	4.7
A6CL006	A6CS073	3	3.5	0.5	796424.3	7831024.5	734	0.073	688	0.069	10,329	1.033	2.8	4	2.5
A6CL006	A6CS074	3.5	4	0.5	796424.3	7831025.0	1,678	0.168	789	0.079	1,690	0.169	3.4	3	7.7
A6CL006	A6CS075	4	4.5	0.5	796424.2	7831025.5	900	0.090	1,417	0.142	725	0.073	4.2	3	4
A6CL006	A6CS076	4.5	5	0.5	796424.1	7831026.0	8,779	0.878	499	0.050	21,674	2.167	12.4	351	218
A6CL006	A6CS077	5	5.5	0.5	796424.0	7831026.5	3,066	0.307	3,206	0.321	7,254	0.725	3.7	81	92.5
A6CL006	A6CS078	5.5	6	0.5	796424.0	7831027.0	1,797	0.180	1,441	0.144	869	0.087	3.3	2	3
A6CL006	A6CS079	6	6.5	0.5	796423.9	7831027.4	163	0.016	1,998	0.200	594	0.059	0.5	<1	0.7
A6CL006	A6CS080	6	6.5	0.5	796423.9	7831027.4	121	0.012	3,414	0.341	943	0.094	0.4	<1	<0.5
A6CL006	A6CS081	6.5	7	0.5	796423.8	7831027.9	107	0.011	6,325	0.633	579	0.058	0.4	<1	<0.5
A6CL006	A6CS082	7	7.5	0.5	796423.7	7831028.4	73	0.007	2,902	0.290	195	0.020	0.5	<1	0.7
A6CL006	A6CS083	7.5	8	0.5	796423.7	7831028.9	91	0.009	2,246	0.225	64	0.006	0.8	<1	<0.5
A6CL012	A6CS166	0	1	1	795972.4	7831122.1	<1	<0.001	119	0.012	106	0.011	0.1	<1	<0.5
A6CL012	A6CS167	1	2	1	795972.4	7831123.1	96	0.010	1,096	0.110	324	0.032	0.4	<1	<0.5
A6CL012	A6CS168	2	3	1	795972.4	7831124.1	125	0.013	3,620	0.362	2,948	0.295	1.4	<1	<0.5
A6CL012	A6CS169	3	4	1	795972.4	7831125.1	92	0.009	11,470	1.147	2,069	0.207	1.0	3	0.6
A6CL012	A6CS171	4	5	1	795972.4	7831126.1	270	0.027	26,003	2.600	3,596	0.360	1.5	7	1.5
A6CL012	A6CS172	5	6	1	795972.5	7831127.1	840	0.084	96,404	9.640	36,710	3.671	20.0	27	9.2
A6CL012	A6CS173	6	7	1	795972.5	7831128.1	124	0.012	14,329	1.433	8,786	0.879	1.9	6	0.6
A6CL012	A6CS174	7	8	1	795972.5	7831129.1	181	0.018	29,078	2.908	18,322	1.832	4.0	6	1.2
A6CL012	A6CS175	8	9	1	795972.5	7831130.1	37	0.004	1,666	0.167	164	0.016	0.4	2	<0.5
A6CL012	A6CS176	9	10	1	795972.5	7831131.1	700	0.070	66,169	6.617	28,511	2.851	12.4	13	3.8

Line ID	Sample ID	mFrom	mTo	Int.	Easting m	Northing m	Cu ppm	Cu%	Zn ppm	Zn%	Pb ppm	Pb%	Ag ppm	Ge ppm	Sb ppm
A6CL012	A6CS177	10	11	1	795972.5	7831132.1	126	0.013	1,348	0.135	1,631	0.163	1.5	<1	1.2
A6CL012	A6CS178	11	12	1	795972.6	7831133.1	96	0.010	1,083	0.108	677	0.068	0.2	<1	<0.5
A6CL012	A6CS179	12	13	1	795972.6	7831134.1	252	0.025	2,610	0.261	2,030	0.203	0.3	2	2.2
A6CL012	A6CS181	13	14	1	795972.6	7831135.1	0	0.000	765	0.077	156	0.016	0.3	<1	Χ
A6CL012	A6CS182	14	15	1	795972.6	7831136.1	124	0.012	1,799	0.180	2,638	0.264	1.9	<1	3.3
A6CL012	A6CS183	15	16	1	795972.6	7831137.1	103	0.010	7,326	0.733	6,392	0.639	1.6	1	3.2
A6CL012	A6CS184	16	17	1	795972.6	7831138.1	186	0.019	2,661	0.266	20,168	2.017	11.3	<1	1.8
A6CL013	A6CS185	0	1	1	795977.4	7831119.9	22	0.002	1,069	0.107	978	0.098	0.2	<1	<0.5
A6CL013	A6CS186	1	2	1	795977.4	7831120.9	27	0.003	2,434	0.243	1,494	0.149	0.5	<1	<0.5
A6CL013	A6CS187	2	3	1	795977.4	7831121.9	25	0.003	4,208	0.421	2,291	0.229	0.4	<1	<0.5
A6CL013	A6CS188	3	4	1	795977.4	7831122.9	30	0.003	3,548	0.355	1,388	0.139	0.5	<1	<0.5
A6CL013	A6CS189	4	5	1	795977.4	7831123.9	<1	<0.001	760	0.076	597	0.060	0.4	<1	<0.5
A6CL013	A6CS191	5	6	1	795977.5	7831124.9	<1	<0.001	1,377	0.138	411	0.041	0.5	<1	<0.5
A6CL013	A6CS192	6	7	1	795977.5	7831125.9	404	0.040	145,537	14.554	45,869	4.587	19.6	44	3.2
A6CL013	A6CS193	7	8	1	795977.5	7831126.9	359	0.036	46,470	4.647	8,737	0.874	5.8	4	2.4
A6CL013	A6CS194	8	9	1	795977.5	7831127.9	46	0.005	3,444	0.344	656	0.066	0.4	5	<0.5
A6CL013	A6CS195	9	10	1	795977.5	7831128.9	208	0.021	4,341	0.434	5,202	0.520	2.1	4	2.1
A6CL013	A6CS196	10	11	1	795977.5	7831129.9	237	0.024	3,846	0.385	1,583	0.158	1.5	2	3.5
A6CL013	A6CS197	11	12	1	795977.6	7831130.9	231	0.023	1,629	0.163	4,237	0.424	2.3	3	1
A6CL013	A6CS198	12	13	1	795977.6	7831131.9	188	0.019	14,453	1.445	4,452	0.445	3.5	2	0.9
A6CL013	A6CS199	13	14	1	795977.6	7831132.9	3,298	0.330	11,842	1.184	3,250	0.325	17.2	1	2.1
A6CL013	A6CS200	13	14	1	795977.6	7831132.9	2,188	0.219	7,880	0.788	2,017	0.202	12.5	1	1.9
A6CL013	A6CS201	14	15	1	795977.6	7831133.9	999	0.100	4,174	0.417	4,883	0.488	1.0	6	9.3
A6CL013	A6CS202	15	16	1	795977.6	7831134.9	478	0.048	2,915	0.292	3,527	0.353	0.5	3	5.9
A6CL013	A6CS203	16	17	1	795977.6	7831135.9	<1	<0.001	1,138	0.114	43	0.004	<0.05	<1	<0.5
A6CL013	A6CS204	17	18	1	795977.7	7831136.9	31	0.003	1,471	0.147	525	0.053	0.1	1	<0.5
A6CL013	A6CS205	18	19	1	795977.7	7831137.9	<1	<0.001	587	0.059	335	0.034	<0.05	1	<0.5
A6CL013	A6CS206	19	20	1	795977.7	7831138.9	<1	<0.001	1,893	0.189	974	0.097	0.3	<1	0.6
A6CL014	A6CS207	0	1	1	795982.4	7831126.4	<1	<0.001	1,027	0.103	1,156	0.116	0.2	9	<0.5
A6CL014	A6CS208	1	2	1	795982.4	7831127.4	34	0.003	1,643	0.164	3,349	0.335	1.0	2	<0.5

Line ID	Sample ID	mFrom	mTo	Int.	Easting m	Northing m	Cu ppm	Cu%	Zn ppm	Zn%	Pb ppm	Pb%	Ag ppm	Ge ppm	Sb ppm
A6CL014	A6CS209	2	3	1	795982.5	7831128.4	66	0.007	1,643	0.164	1,755	0.176	2.1	2	<0.5
A6CL014	A6CS211	3	4	1	795982.5	7831129.4	21	0.002	526	0.053	273	0.027	<0.05	5	<0.5
A6CL014	A6CS212	4	5	1	795982.5	7831130.4	701	0.070	23,149	2.315	3,996	0.400	13.6	6	3.2
A6CL014	A6CS213	5	6	1	795982.5	7831131.4	318	0.032	7,758	0.776	2,675	0.268	4.4	6	2.5
A6CL014	A6CS214	6	7	1	795982.5	7831132.4	220	0.022	11,601	1.160	1,273	0.127	4.8	2	1.3
A6CL014	A6CS215	7	8	1	795982.5	7831133.4	1,901	0.190	4,317	0.432	10,855	1.086	16.0	3	7.5
A6CL014	A6CS216	8	9	1	795982.6	7831134.4	210	0.021	23,377	2.338	15,941	1.594	10.5	9	1.4
A6CL014	A6CS217	9	10	1	795982.6	7831135.4	88	0.009	1,623	0.162	302	0.030	0.7	<1	<0.5
A6CL014	A6CS218	10	11	1	795982.6	7831136.4	130	0.013	997	0.100	2,989	0.299	4.4	1	1.5
A6CL014	A6CS219	11	12	1	795982.6	7831137.4	39	0.004	351	0.035	117	0.012	0.3	<1	<0.5
A6CL014	A6CS221	12	13	1	795982.6	7831138.4	77	0.008	573	0.057	365	0.037	0.2	<1	0.5
A6CL014	A6CS222	13	14	1	795982.6	7831139.4	31	0.003	554	0.055	333	0.033	0.1	<1	<0.5
A6CL014	A6CS223	14	15	1	795982.7	7831140.4	23	0.002	323	0.032	185	0.019	0.2	<1	<0.5
A6CL014	A6CS224	15	16	1	795982.7	7831141.4	96	0.010	13,745	1.375	7,453	0.745	2.3	<1	0.8
A6CL014	A6CS225	16	17	1	795982.7	7831142.4	53	0.005	6,514	0.651	259	0.026	0.3	<1	0.8
A6CL014	A6CS226	17	18	1	795982.7	7831143.4	36	0.004	4,834	0.483	88	0.009	0.4	<1	<0.5
A6CL015	A6CS227	0	1	1	795987.5	7831129.1	1,069	0.107	12,350	1.235	13,932	1.393	14.1	4	3.5
A6CL015	A6CS228	1	2	1	795987.5	7831130.1	738	0.074	9,912	0.991	9,210	0.921	8.8	3	2.1
A6CL015	A6CS229	2	3	1	795987.5	7831131.1	536	0.054	7,152	0.715	8,122	0.812	9.1	4	2.2
A6CL015	A6CS231	3	4	1	795987.5	7831132.1	44	0.004	1,544	0.154	1,630	0.163	1.0	1	<0.5
A6CL015	A6CS232	4	5	1	795987.6	7831133.1	32	0.003	773	0.077	273	0.027	0.5	<1	1.1
A6CL015	A6CS233	5	6	1	795987.6	7831134.1	24	0.002	742	0.074	208	0.021	0.4	<1	1.6
A6CL015	A6CS234	6	7	1	795987.6	7831135.1	22	0.002	541	0.054	157	0.016	0.3	<1	0.6
A6CL015	A6CS235	7	8	1	795987.6	7831136.1	39	0.004	760	0.076	873	0.087	0.7	<1	0.7
A6CL015	A6CS236	8	9	1	795987.6	7831137.1	32	0.003	1,271	0.127	234	0.023	0.4	<1	1.5
A6CL015	A6CS237	9	10	1	795987.6	7831138.1	31	0.003	1,163	0.116	123	0.012	0.5	<1	1
A6CL015	A6CS238	10	11	1	795987.7	7831139.1	23	0.002	533	0.053	107	0.011	0.3	<1	<0.5
A6CL015	A6CS239	11	12	1	795987.7	7831140.1	42	0.004	635	0.064	177	0.018	0.2	<1	<0.5
A6CL015	A6CS240	11	12	1	795987.7	7831140.1	50	0.005	856	0.086	202	0.020	0.2	<1	<0.5
A6CL015	A6CS241	12	13	1	795987.7	7831141.1	100	0.010	144	0.014	202	0.020	0.5	<1	<0.5

Line ID	Sample ID	mFrom	mTo	Int.	Easting m	Northing m	Cu ppm	Cu%	Zn ppm	Zn%	Pb ppm	Pb%	Ag ppm	Ge ppm	Sb ppm
A6CL015	A6CS242	13	14	1	795987.7	7831142.1	<1	<0.001	121	0.012	72	0.007	<0.05	<1	<0.5
A6CL016	A6CS243	0	1	1	795992.7	7831126.0	<1	<0.001	974	0.097	418	0.042	<0.05	<1	<0.5
A6CL016	A6CS244	1	2	1	795992.7	7831127.0	<1	<0.001	377	0.038	327	0.033	<0.05	<1	<0.5
A6CL016	A6CS245	2	3	1	795992.7	7831128.0	64	0.006	1,145	0.115	1,476	0.148	0.8	<1	0.7
A6CL016	A6CS246	3	4	1	795992.8	7831129.0	64	0.006	7,428	0.743	4,838	0.484	1.5	2	0.9
A6CL016	A6CS247	4	5	1	795992.8	7831130.0	94	0.009	8,575	0.858	9,974	0.997	2.6	2	0.9
A6CL016	A6CS248	5	6	1	795992.8	7831131.0	38	0.004	2,007	0.201	2,349	0.235	0.7	1	<0.5
A6CL016	A6CS249	6	7	1	795992.8	7831132.0	61	0.006	10,049	1.005	4,994	0.499	1.7	3	<0.5
A6CL016	A6CS251	7	8	1	795992.8	7831133.0	102	0.010	21,529	2.153	14,203	1.420	2.8	4	1
A6CL016	A6CS252	8	9	1	795992.8	7831134.0	37	0.004	16,706	1.671	6,478	0.648	1.2	4	<0.5
A6CL016	A6CS253	9	10	1	795992.9	7831135.0	109	0.011	634	0.063	414	0.041	1.1	2	<0.5
A6CL016	A6CS254	10	11	1	795992.9	7831136.0	<1	<0.001	1,662	0.166	1,630	0.163	0.3	<1	<0.5
A6CL016	A6CS255	11	12	1	795992.9	7831137.0	<1	<0.001	985	0.099	1,690	0.169	0.3	<1	<0.5
A6CL016	A6CS256	12	13	1	795992.9	7831138.0	<1	<0.001	269	0.027	91	0.009	<0.05	<1	<0.5
A6CL016	A6CS257	13	14	1	795992.9	7831139.0	<1	<0.001	362	0.036	119	0.012	<0.05	<1	1.2
A6CL017	A6CS258	0	1	1	795997.4	7831122.1	<1	<0.001	1,135	0.114	138	0.014	<0.05	<1	<0.5
A6CL017	A6CS259	1	2	1	795997.4	7831123.1	<1	<0.001	4,829	0.483	3,902	0.390	1.1	1	<0.5
A6CL017	A6CS261	2	3	1	795997.4	7831124.1	<1	<0.001	8,971	0.897	2,811	0.281	0.6	1	<0.5
A6CL017	A6CS262	3	4	1	795997.4	7831125.1	61	0.006	7,074	0.707	276	0.028	0.3	<1	<0.5
A6CL017	A6CS263	4	5	1	795997.4	7831126.1	20	0.002	2,911	0.291	3,466	0.347	0.5	4	<0.5
A6CL017	A6CS264	5	6	1	795997.4	7831127.1	191	0.019	17,834	1.783	11,535	1.154	2.8	2	<0.5
A6CL017	A6CS265	6	7	1	795997.5	7831128.1	130	0.013	10,255	1.026	10,961	1.096	2.8	5	<0.5
A6CL017	A6CS266	7	8	1	795997.5	7831129.1	30	0.003	2,045	0.205	3,398	0.340	1.6	5	<0.5
A6CL017	A6CS267	8	9	1	795997.5	7831130.1	342	0.034	38,484	3.848	4,880	0.488	2.8	4	0.6
A6CL017	A6CS268	9	10	1	795997.5	7831131.1	47	0.005	9,194	0.919	8,120	0.812	1.8	3	<0.5
A6CL017	A6CS269	10	11	1	795997.5	7831132.1	53	0.005	937	0.094	1,478	0.148	0.5	<1	<0.5
A6CL017	A6CS271	11	12	1	795997.5	7831133.1	<1	<0.001	841	0.084	320	0.032	<0.05	<1	<0.5
A6CL017	A6CS272	12	13	1	795997.6	7831134.1	37	0.004	5,404	0.540	4,011	0.401	0.8	1	<0.5
A6CL017	A6CS273	13	14	1	795997.6	7831135.1	<1	<0.001	75	0.008	43	0.004	<0.05	<1	<0.5
A6CL018	A6CS274	0	1	1	796002.5	7831126.3	91	0.009	2,212	0.221	263	0.026	1.0	<1	<0.5

Line ID	Sample ID	mFrom	mTo	Int.	Easting m	Northing m	Cu ppm	Cu%	Zn ppm	Zn%	Pb ppm	Pb%	Ag ppm	Ge ppm	Sb ppm
A6CL018	A6CS275	1	2	1	796002.5	7831127.3	317	0.032	21,607	2.161	16,366	1.637	8.3	4	1.1
A6CL018	A6CS276	2	3	1	796002.6	7831128.3	251	0.025	3,858	0.386	567	0.057	2.6	1	1.6
A6CL018	A6CS277	3	4	1	796002.6	7831129.3	39	0.004	3,362	0.336	371	0.037	0.3	1	0.9
A6CL018	A6CS278	4	5	1	796002.6	7831130.3	60	0.006	11,554	1.155	751	0.075	0.7	2	<0.5
A6CL018	A6CS279	5	6	1	796002.6	7831131.3	39	0.004	1,924	0.192	534	0.053	0.5	1	0.9
A6CL018	A6CS280	5	6	1	796002.6	7831131.3	176	0.018	1,932	0.193	802	0.080	0.7	2	0.9
A6CL018	A6CS281	6	7	1	796002.6	7831132.3	25	0.003	3,896	0.390	1,868	0.187	0.8	2	<0.5
A6CL018	A6CS282	7	8	1	796002.6	7831133.3	21	0.002	1,526	0.153	237	0.024	0.1	<1	<0.5
A6CL018	A6CS283	8	9	1	796002.7	7831134.3	26	0.003	368	0.037	548	0.055	0.2	<1	0.8
A6CL018	A6CS284	9	10	1	796002.7	7831135.3	23	0.002	262	0.026	203	0.020	0.2	<1	<0.5

APPENDIX 1b: Rockchip sample results, Gossan 1 East and Northeast Extension, Graceland Prospect

Area	Sample_ID	X_coord	Y_Coord	Elevation	Cu ppm	Cu%	Zn ppm	Zn%	Pb ppm	Pb%	Ag ppm	Ge ppm	Sb ppm
NE-Ext	A6GS67	796,935	7,831,408	1877	1,044	0.104	162	0.016	176	0.018	7.2	<1	3.1
NE-Ext	A6GS68	796,927	7,831,278	1903	<10	<0.001	13843	1.384	1172	0.117	0.5	1	Χ
NE-Ext	A6GS69	796,935	7,831,226	1898	100	0.010	31278	3.128	19402	1.940	11.8	6	7.3
NE-Ext	A6GS70	796,880	7,831,289	1922	49	0.005	27744	2.774	3766	0.377	1.9	2	8.0
NE-Ext	A6GS71	796,880	7,831,414	1895	48	0.005	174	0.017	9996	1.000	4.3	<1	3.2
NE-Ext	A6GS72	797,084	7,831,236	1847	1,499	0.150	276	0.028	45	0.005	8.4	<1	1.6
NE-Ext	A6GS73	797,155	7,831,242	1837	4,298	0.430	176	0.018	<10	< 0.001	46.5	<1	6.5
Gossan 1E	A6GS74	796,615	7,831,030	1940	419,662	41.97	7929	0.793	1759	0.176	40.1	15	74.9
Gossan 1E	A6GS75	796,615	7,831,029	1940	409,052	40.91	6988	0.699	994	0.099	154.2	24	105.1

APPENDIX 2: Central Otavi Project, Graceland Prospect, Channel Sample Mineralisation Descriptions (G1 West Ext. and G1 East)

Zone	Line ID	Sample II	mFron	mTo	Х	Υ	Description
G1 West Ext		A6CS285	0		795287.3	7830759.3	
	A6CL019	A6CS286	1	. 2	795287	7830760.2	
	A6CL019	A6CS287	2	3	795286.6	7830761.2	Dolomite with zones of silica brecciation, containing sporadic malachite rims developed after chalcocite clots (1% min composition)
	A6CL019	A6CS288	3	4	795286.3	7830762.1	Dolomite with zones of silica brecciation, containing sporadic malachite rims developed after chalcocite clots (0.2% min composition)
	A6CL019	A6CS289	4	. 5	795286	7830763.1	Dolomite with zones of silica brecciation, containing sporadic malachite rims developed after chalcocite clots (0.2% min composition)
	A6CL019	A6CS291	5	6	795285.7	7830764	Grey dolomite locally altered, fine local quartz-calcite brecciation noted; various alteration zones incl mottled iron oxidation-fracture coating
	A6CL019	A6CS292	6	7	795285.3	7830765	
	A6CL019	A6CS293	7	' E	795285	7830765.9	
	A6CL019	A6CS294	8	9	795284.7	7830766.9	
	A6CL019	A6CS295	9	10	795284.4	7830767.8	
	A6CL019	A6CS296	10	11	795284.1	7830768.8	
G1 West Ext	A6CL020	A6CS297	0	1	795303.9	7830773.6	
	A6CL020	A6CS298	1	. 2	795303.6	7830774.5	
	A6CL020	A6CS299	2	3	795303.3	7830775.4	Silicified dolomite, with rare medium grained chalcocite clots, with secondary malachite; specs of native copper noted (0.5% min composition)
	A6CL020	A6CS301	3	4	795303	7830776.4	Silicified dolomite, with rare medium grained chalcocite clots, with secondary malachite; specs of native copper noted (0.1% min composition)
	A6CL020	A6CS302	4	. 5	795302.6		Silicified dolomite, with rare medium grained chalcocite clots, with secondary malachite; specs of native copper noted (0.1% min composition)
	A6CL020	A6CS303	5	6	795302.3	7830778.3	Silicified dolomite, with rare medium grained chalcocite clots, with secondary malachite; specs of native copper noted (0.5% min composition)
	A6CL020	A6CS304	6	7	795302		Silicified dolomite, with rare medium grained chalcocite clots, with secondary malachite; specs of native copper noted (0.1% min composition)
	A6CL020	A6CS305	7	, E			Silicified dolomite, with rare medium grained chalcocite clots, with secondary malachite; specs of native copper noted (0.1% min composition)
	A6CL020	A6CS306	8	9	795301.3		
	A6CL020	A6CS307	9	10	795301	7830782.1	
	A6CL020	A6CS308	10	_			
	A6CL020	A6CS309	11	-			
	A6CL020	A6CS311	12	13			
	A6CL020	A6CS312	13	14		7830785.8	
	A6CL020	A6CS313	14	15			Grey to moderate grey dolomite, with localised of argillic alteration, rare malachite specs after chalcocite (0.1% Min composition)
G1 West Ext	A6CL021	A6CS314	0	1	795346.4		Grey to moderate grey dolomite, with localised of argillic alteration, rare malachite specs after chalcocite (0.5% Min composition)
	A6CL021	A6CS315	1	2	795346.1	7830793.0	
	A6CL021	A6CS316	2	3	795345.7	7830793.9	
	A6CL021	A6CS317	3	4	795345.4	7830794.9	
	A6CL021	A6CS318	4	. 5			Grey to moderate grey dolomite, with localised of argillic alteration, rare malachite specs after chalcocite (0.5% Min composition)
	A6CL021	A6CS319	5	6			Grey to moderate grey dolomite, with localised of argillic alteration, rare malachite specs after chalcocite (0.5% Min composition)
	A6CL021	A6CS321	6	7	795344.4		Grey to moderate grey dolomite, with localised of argillic alteration, rare malachite specs after chalcocite (0.5% Min composition)
	A6CL021	A6CS322	7	, ε	1	1	Grey dolomite with localised brecciation, silica-carbonate matrix with malachite and chalcocite clots, strong hematitic alteration noted (1% Min Composition)
	A6CL021	A6CS323	8		795343.8	1	Grey dolomite with localised brecciation, silica-carbonate matrix with malachite and chalcocite clots, strong hematitic alteration noted (1% Min Composition)
	A6CL021	A6CS324	9	10			Grey to moderate grey dolomite, with localised of argillic alteration, rare malachite specs after chalcocite (0.5% Min composition)
	A6CL021	A6CS325	10			7830801.5	, , , , , , , , , , , , , , , , , , , ,
	A6CL021	A6CS326	11	+		7830802.4	Silicified dolomite, with rare medium grained chalcocite clots, with secondary malachite; specs of native copper noted (0.1% min composition)
	A6CL021	A6CS327	12	13		7830803.4	, , , , , , , , , , , , , , , , , , , ,
G1 West Ext		A6CS328	0	1	795364.5		Grey to moderate grey dolomite, with localised of argillic alteration, rare malachite specs after chalcocite (0.5% Min composition)
CI WOOL EAR	A6CL022	A6CS329	1	2	795364.2	7830796.2	gray to measure gray actioning, man treatment of argument and the management appeal area analogue (0.070 min composition)
	A6CL022	A6CS331	2	3	795363.9	7830790.2	
	A6CL022	A6CS332	3		795363.6		Grey to moderate grey dolomite, with localised of argillic alteration, rare malachite specs after chalcocite (0.5% Min composition)
	A6CL022	A6CS333	1	-	795363.2	7830798.0	or of the desirate gray determine, man received or digitate dates dates and control or district control of the composition)
	A6CL022	A6CS334	5	6			
	A6CL022	A6CS335	6	-	795362.6		Pinkish-grey dolomite (limonitic); fracture fill-malachite common after chalcocite (5% Min Composition)
	A6CL022	A6CS336	7	΄ ε			Pinkish-grey dolomite (limonitic); fracture fill-malachite common after chalcocite (20% Min Composition)
	A6CL022	A6CS337	ν ο	9 9			Grey, locally brecciated dolomite with fine to moderate clots of chalcocite and secondary malachite, common in the carbonate-silica matrix (3% Min Compos
	A6CL022		0	10		7830802.6	
	AUCLU22	MUCOSS	9	1 10	/ /30301.6	/030003./	<u>I</u>

Zono	Line ID	Sample ID	m From	mTo.	Int	Facting	Northing	Description
Zone							Northing	Description
G1 East		A6CS084	0	0.5			7831025.6	
		A6CS085	0.5	1	0.5		7831026.1	
	A6CL007	A6CS086	1	1.5	0.5		7831026.6	
		A6CS087	1.5	2	0.5		7831027.1	
		A6CS088	2	2.5	0.5		7831027.6	
		A6CS089	2.5	3	0.5		7831028.1	
		A6CS091	3	3.5	0.5	796611.0		Light grey dolomite with some fracture-coating malachite (05%); iron oxidation noted
		A6CS092	3.5	4	0.5			Weathered limonitic gossan with pervasive malachite (15%)
		A6CS093	4	4.5	0.5			Gossan with pervasive malachite (25%), azurite (1%) after sulphides and remnant chalcocite (1%)
		A6CS094	4.5	5	0.5			Gossan with pervasive malachite (25%), azurite (1%) after sulphides and remnant chalcocite (1%)
		A6CS095	5	5.5	0.5	796610.7	7831030.5	
	A6CL007	A6CS096	5.5	6	0.5	796610.6	7831031.0	
G1 East	A6CL008	A6CS097	0	0.5	0.5	796613.4	7831025.9	
	A6CL008	A6CS098	0.5	1	0.5	796613.4	7831026.4	
	A6CL008	A6CS099	1	1.5	0.5	796613.3	7831026.9	
	A6CL008	A6CS101	1.5	2	0.5	796613.2	7831027.4	
	A6CL008	A6CS102	2	2.5	0.5	796613.1	7831027.9	
		A6CS103	2.5	3	0.5	796613.1	7831028.4	
	A6CL008	A6CS104	3	3.5	0.5	796613.0	7831028.9	Weathered limonitic gossan with pervasive malachite (25%) and azurite (10%)
	A6CL008	A6CS105	3.5	4	0.5	796612.9	7831029.4	Altered/bleached dolomite with fracture-fill malachite (1%); gossanous fracture-fill with malachite and azurite (10%)
	A6CL008	A6CS106	4	4.5	0.5	796612.8	7831029.9	Altered/bleached dolomite with fracture-fill malachite (1%); gossanous fracture-fill with malachite and azurite (5%)
	A6CL008	A6CS107	4.5	5	0.5	796612.7	7831030.4	Massive light grey dolomite with localised zone of alteration with malachite (1%)
	A6CL008	A6CS108	5	5.5	0.5	796612.7	7831030.9	Massive light grey dolomite with localised zone of alteration with malachite (1%)
	A6CL008	A6CS109	5.5	6	0.5	796612.6	7831031.4	Massive light grey dolomite with localised zone of alteration with malachite (1%)
	A6CL008	A6CS111	6	6.5	0.5	796612.5	7831031.9	Massive light grey dolomite with localised zone of alteration with malachite (1%)
	A6CL008	A6CS112	6.5	7	0.5	796612.4	7831032.4	
G1 East	A6CL009	A6CS113	0	0.5	0.5	796614.9	7831026.2	Limonitic karst-fill with some malachite
	A6CL009	A6CS114	0.5	1	0.5	796614.8	7831026.7	Limonitic karst-fill with some malachite
	A6CL009	A6CS115	1	1.5	0.5	796614.8	7831027.2	Gossanous fill (strongly weathered), with localised malachite
	A6CL009	A6CS116	1.5	2	0.5			Gossanous fill (strongly weathered), with localised malachite
	1	A6CS117	2	2.5	0.5			Gossanous fill (strongly weathered), with localised malachite
	A6CL009	A6CS118	2.5	3	0.5			Gossanous fill (strongly weathered), with localised malachite
		A6CS119	3	3.5	0.5			Gossanous fill (strongly weathered), with localised malachite
	A6CL009	A6CS121	3.5	4	0.5			Gossanous fill (strongly weathered), with localised malachite
		A6CS122	4	4.5	0.5	796614.3		Weathered limonitic gossan with localised pervasive malachite (25%) and azurite (10%)
		A6CS123	4.5	5	0.5			Weathered limonitic gossan with localised pervasive malachite (25%) and azurite (10%)
		A6CS124	5	5.5	0.5			Weathered limonitic gossan with localised pervasive malachite (25%) and azurite (10%)
		A6CS125	5.5	6	0.5			Massive light grey dolomite with malachite (1%)
		A6CS126	6	6.5	0.5			Massive light grey dolomite with malachite (1%)
		A6CS127	6.5	7	0.5			Massive light grey dolomite with malachite (3%); localised iron oxidation
		A6CS128	7	7.5	0.5		7831033.1	
	1	A6CS129	7.5	8	0.5	796613.7	7831033.6	
		A6CS130	7.5		0.5			
	, IOOLOUJ	, .000100			U	I	·	

Zone	Line ID	Sample ID	mFrom	mTo	Int.	Easting	Northing	Description
G1 East	A6CL010	A6CS131	0	0.5		_	7831026.5	···· T
	A6CL010	A6CS132	0.5	1	0.5			Gossanous, limonitic fill (weathered), with localised malachite (1%)
	A6CL010	A6CS133	1	1.5	0.5			Gossanous, limonitic fill (weathered), with localised malachite (1%)
	A6CL010	A6CS134	1.5	2	0.5	796616.2		Cherty dolomite, fracture-fill malachite (1%); frequent iron oxidation selvedge noted
	A6CL010	A6CS135	2	2.5	0.5	796616.1	7831028.4	Cherty dolomite, fracture-fill malachite (1%); frequent iron oxidation selvedge noted
	A6CL010	A6CS136	2.5	3	0.5	796616.0		Cherty dolomite, fracture-fill malachite (1%); frequent iron oxidation selvedge noted
	A6CL010	A6CS137	3	3.5	0.5	796615.9	7831029.4	Cherty dolomite, fracture-fill malachite (1%); frequent iron oxidation selvedge noted
	A6CL010	A6CS138	3.5	4	0.5	796615.8	7831029.9	Cherty dolomite, fracture-fill malachite (1%); frequent iron oxidation selvedge noted
	A6CL010	A6CS139	4	4.5	0.5	796615.8	7831030.4	Cherty dolomite, fracture-fill malachite (5%); frequent iron oxidation selvedge noted
	A6CL010	A6CS141	4.5	5	0.5	796615.7	7831030.9	Weathered gossan, with pervasive malachite (25%) and azurite
	A6CL010	A6CS142	5	5.5	0.5	796615.6	7831031.4	Weathered gossan, with pervasive malachite (5%) and fractured grey dolomite with localised malachite
	A6CL010	A6CS143	5.5	6	0.5	796615.5	7831031.9	
	A6CL010	A6CS144	6	6.5	0.5	796615.4	7831032.4	
	A6CL010	A6CS145	6.5	7	0.5	796615.4	7831032.9	
	A6CL010	A6CS146	7	7.5	0.5	796615.3	7831033.4	
	A6CL010	A6CS147	7.5	8	0.5	796615.2	7831033.9	
G1 East	A6CL011	A6CS148	0	0.5	0.5	796618.2	7831027.8	
	A6CL011	A6CS149	0.5	1	0.5	796618.1	7831028.3	
	A6CL011	A6CS151	1	1.5	0.5	796618.0	7831028.8	
	A6CL011	A6CS152	1.5	2	0.5	796617.9	7831029.3	
	A6CL011	A6CS153	2	2.5	0.5	796617.9	7831029.8	
	A6CL011	A6CS154	2.5	3	0.5	796617.8	7831030.3	
	A6CL011	A6CS155	3	3.5	0.5	796617.7	7831030.7	
	A6CL011	A6CS156	3.5	4	0.5		7831031.2	
	A6CL011	A6CS157	4	4.5	0.5	796617.6	7831031.7	Dolomite with chert laminae; trace (0.5%) layer-parallel fine malachite
	A6CL011	A6CS158	4.5	5	0.5	796617.5	7831032.2	Dolomite with chert laminae; trace (0.5%) layer-parallel fine malachite
	A6CL011	A6CS159	5	5.5	0.5	796617.4	7831032.7	Dolomite with chert laminae; trace (0.5%) layer-parallel fine malachite
	A6CL011	A6CS160	5	5.5	0.5	796617.4	7831032.7	
	A6CL011	A6CS161	5.5	6	0.5	796617.3	7831033.2	
	A6CL011	A6CS162	6	6.5	0.5	796617.2		
	A6CL011	A6CS163	6.5	7	0.5		7831034.2	
	A6CL011	A6CS164	7	7.5	0.5		7831034.7	
	A6CL011	A6CS165	7.5	8	0.5	796617.0	7831035.2	

APPENDIX 2: JORC 2012 Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information. 	 The new channel sampling program included 338 samples (including Standards and duplicates). The surface channels were sampled on 0.5m to 1m intervals along a diamond saw cut channel. The channel is approximately 5cm wide and samples are chipped using a geological hammer and cold chisel prior to being placed in an individually numbered calico bag in preparation for chemical analysis (multielement assay) at the conclusion of the field program(s). Each sample weighed approximately 1 to 2 kg. The channels are cut at a right angle to the strike of the mineralised zone to ensure representivity. Rockchip samples are prepared by Intertek Genalysis in Tsumeb, Namibia. Here the samples are sorted, dried, crushed and pulverised in a vibrating pulveriser. A ~300g sub sample was despatched to Intertek Genalysis in Perth for analysis. Rockchip samples are analysed via "ore-grade" method, FP1/0M42 = Sodium Peroxide Fusion dissolution then ICP-MS or ICP-OES analysis. Samples were analysed for a 43 element package. In addition, a 25g charge was taken for fire assay for Au, Pt, Pd. Appendix 1a includes all channel sample results from Gossan 1 and Gossan 2. Appendix 1b includes new rockchip sample locations and geological descriptions of mineralisation encountered in channels at gossan 1 East and Gossan 1 West Extension. The details of locations, sampling, analysis and results of previous rockchip samples and soil samples were reported in: Golden Deeps Ltd ASX 21 August 2025. Further Spectacular Copper Silver with Germanium in Otavi, and, Golden Deeps Ltd ASX 06 August 2025. Exceptional Otavi Copper Silver Zinc and Germanium Grades. Previously announced soil sample results were analysed via method 4AR-MS/OES = Four Acid Aqua Regia digest prior to ICP Mass Spectroscopy (ICP-MS. Samples were analysed for a 53-element package.

Criteria	JORC Code explanation	Commentary
Drilling techniques	Drill type (e.g., core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	No new drilling reported in this release.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	No new drilling reported in this release.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Rockchip sample descriptions of mineralisation are recorded for mineralised channel samples (see Appendix 2). The level of detail recorded for channel samples is sufficient to support a mineral Resource estimation, in conjunction with drilling intersections.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 No new drilling reported in this release. The surface channels were sampled on 0.5m to 1m intervals along a diamond saw cut channel. The channel is approximately 5cm wide and samples are chipped using a geological hammer and cold chisel prior to being placed in an individually numbered calico bag in preparation for chemical analysis (multielement assay) at the conclusion of the field program(s). Each sample weighed approximately 1 to 2 kg. The channels are cut at a right angle to the strike of the mineralised zone to ensure representivity. Duplicate samples were collected every 40 samples. Standards were inserted every 40 samples. Rockchip samples are prepared by Intertek Genalysis in Tsumeb, Namibia. Here the samples were sorted, dried, crushed and pulverised in a vibrating pulveriser. A ~300g sub sample was despatched to Intertek Genalysis in Perth for analysis. The sample preparation technique is quality assured and

Criteria	JORC Code explanation	Commentary
	·	appropriate for the sample type being analysed.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established. 	 The rockchip sample(s) are fully digested using "ore-grade" method, FP1/OM42 = Sodium Peroxide Fusion dissolution then analysed by ICP-MS or ICP-OES. Samples were analysed for a 43 element package. In addition, a 25g charge was taken for fire assay for Au, Pt, Pd. These methods are quality assured and appropriate for the samples analysed. For both rockchip and soil samples sampling procedures involve the insertion of registered Standards every 40 samples. Quality control reports are undertaken routinely to monitor the performance of field standards and duplicates, and laboratory accuracy and precision.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	No drilling reported in this release.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Channel sampling, rockchip and soil sampling locations are logged using a hand-held GPS (National Grid ID: WGS84_33S). Appendix 1a includes all channel sample locations for results reported in this release and Appendix 2 includes channel sampling locations and geological descriptions of mineralisation encountered in channels at Gossan 1 East and Gossan 1 West Extended.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Rockchip channels were sampled on 0.5m to 1m intervals along a diamond saw cut channel. The channels are cut at a right angle to the strike of the mineralised zone to ensure representivity. The spacing of channels varies from 2m across short strike-length gossans to 20m across Gossan 1 West Ext. This spacing ensures continuity is established. No sample compositing applied.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have 	The channels are cut at a right angle to the strike of the mineralised zone to ensure representivity.

Criteria	JORC Code explanation	Commentary
	introduced a sampling bias, this should be assessed and reported if material.	
Sample security	The measures taken to ensure sample security.	All samples remain in the custody of Company geologists and are fully supervised from point of field collection to laboratory drop-off for secure transport to registered laboratories.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	New data is industry best practice sampling techniques and laboratory procedures. Current practices are well established and quality control data regularly reviewed.

JORC 2012 Edition - Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The four tenements that make up the Central Otavi Project are owned by Metalex Mining and Exploration Pty Ltd (Metalex). Golden Deeps Ltd purchased 80% of Namex Pty Ltd, the Australian holding Company of Metalex. The four Metalex tenements are as follows: EPL8548: (Kaskara) granted 1/08/2023 to 31/07/2026 EPL8547: (Khusib North) granted 21/12/2022 to 20/12/2025 EPL8546: (Nosib West) granted 21/12/2022 to 20/12/2025 EPL8643: (Abenab NE) granted 21/12/2022 to 20/12/2025 The tenements are in good standing and renewal of the tenements at expiry by the Namibian Government is expected as they are in their first term. The Company already operates in the region and the Otavi Mountain Land is an established mining and exploration area. Exploration is subject to Environmental Compliance Certificates are in place for these tenements as well as landholder access agreements.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The majority of historical exploration was carried out by Sabre Resources Ltd between 2007 and 2021. Sabre carried out extensive soil sampling programs (pXRF analysis), electrical geophysics programs (IP and EM) and in selected prospect areas, including Border, Driehoek and Kaskara, trenching and channel sampling, and reverse circulation (RC) and diamond drilling (see prospect locations, Figures 1 and 5). The work by Sabre generally represents standard industry practice and will be the subject of ongoing review and assessment. Goldfields Ltd also carried out geochemical and geophysical programs as well as selected drilling from 1981 to 2006 – including of the shallow portions of the Border deposit. Goldfields conducted a shallow 21-hole percussion drilling program at Border (10m depth) in an attempt to define easily mineable shallow mineralisation. Goldfields also carried out trenching and diamond drilling of the Dreihoek deposit. Further information on location and sampling is required for this work. Exploration was also undertaken by previous holders Etosha Minerals (1969-1981). Etosha

Criteria	JORC Code explanation	Commentary
		carried out diamond drilling as well as resource estimates and metallurgical test work on the Border deposit. A total of 23 diamond holes were completed. Further information on location and sampling is required for this work. • Eland Exploration Ltd carried out diamond drilling at the Driehoek prospect in the 1970s and produced several intersections. Insufficent data is available to report these intersections in compliance with JORC 2012.
		Previous exploration in Area 6 was limited to soil sampling by Goldfields and by Sabre Resources who carried out pXRF analysis of samples. Insufficient quality control data is available to allow reporting of this information.
Geology	Deposit type, geological setting and style of mineralisation.	 The tenements held by Metalex are located in the Otavi Mountain Land (OML) District of Namibia (see Figure 5).
		The OML is located in the Northern Platform Zone of the east-northeast striking intracontinental branch of the Damara Belt, at the southern margin of the Congo craton. The Damara Belt is a regional mobile belt of Pan African age, between 1,000Ma and 250Ma, consisting of complex rift spreading and compressional events. The sediments in the OML are mainly shallow water carbonates and siliciclastic rocks of the Neoproterozoic Damaran Supergroup.
		There are in excess of 600 mineral occurrences in the OML, including the renowned Tsumeb and Kombat copper mines. Based on their geometry, geochemical and Pb-isotopic characteristics, previous have grouped these deposits into two different types of primary deposits. The pipe-like structure of the Tsumeb-Type (Cu-Pb-Zn-Ag +/- Sb, Ge, Ga) and the stratabound Berg Aukas-Type (Pb-Zn-Ag) are the best-known examples of these deposits.
		The deposit types have been described as Missisipi Valley Type, carbonate hosted deposits formed during early basinal fluid migration. However recent authors have generally attributed the mineralisation to an orogenic setting, with mineralisation associated with extensional then inverted fault zones and deposition of metals in solution breccias and vein networks.
		The OML is also host to secondary, non- sulphide deposit types associated the Pb-Zn vanadate descloizite and/or the Cu-Zn vanadate Mottramite. The Abenab vanadium deposit is the largest known example of this type of deposit. The formation of the vanadates is related to a secondary overprint by circulation of slightly heated meteoric fluids took place during a phase of deep continental

Criteria	JORC Code explanation	Commentary
		weathering in the late Cenozoic. This circulation fostered the formation of supergene Pb-Zn-Cu vanadates in post-Damaran karst fillings, solution collapse and tectonic breccias.
		The Border deposit and the Driehoek deposit are examples of Berg Aukas-Type (Pb-Zn-Ag) deposits. Border occurs on the Pavian Trend which includes a number of evenly spaced Zn-Pb-Ag sulphide deposits and prospects which are generally stratabound but also show characteristics of fault control.
		The Kaskara deposit, as expressed at surface, is a series of secondary, non-sulphide vanadate breccia hosted deposits, associated with the V-Pb-Zn vanadate descloizite and/or the V-Cu-Pb vanadate Mottramite. The vanadate deposits in the OML generally form above or in the vicinity of primary sulphide deposits which may be of the Tsumeb (Cu-Pb-Zn-Ag) type or the Berg Aukus (Zn-Pb-Ag) type.
		Area 6 geology is predominantly Abenab (Otavi) Group carbonate rocks (dolomite and limestone/marble with siliclastic layers and some arenite / sandstone and peilte layers). Significant faulting has been observed, subparallel to the predominantly eastnortheastwestsouthwest trending stratigraphy. Cross faulting is also evident and the largest mineralisation occurrences are associated with these fault zones.
		The style of mineralisation encountered at Area 6 includes gossanous iron-oxide with breccia fabrics and relict sulphide textures as well as secondary malachite and azurite (copper-carbonate) mineralisation. Sulphide outcrops have also been logged, and include sphalerite, galena and lesser chalcopyrite as clots, veins and massive sulphide lenses.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	No drilling reported in this release.
	 easting and northing of the drill hole collar 	
	 elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar 	
	o dip and azimuth of the hole	
	 down hole length and interception depth 	
	o hole length.	
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not	

Criteria	JORC Code explanation	Commentary
	detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	Results of channel sampling not yet received or reported.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known'). 	The channels are cut at a right angle to the strike of the mineralised zone to ensure representivity.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Figure 1 is a plan of the Central Otavi Project Tenements with key prospects, mineralised trends and Target Areas. Figure 2 is a plan of the extended Target Area 6 including Graceland Prospect with rockchip sample grades shown as variable size grade ranges for copper and soil samples shown as variable colours grade range contours with corridor outlines. The locations of channel sampled zones is shown. Figures 3 & 4 show new channel sampling and rockchip locations and results with previous rockchip sample highlights on soil sampling contours for copper and zinc respectively. Figure 5 is a location plan of Golden Deeps Otavi Mountain Land existing and acquisition tenements with key prospects and other mine locations, with Namibia location inset.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Appendix 1a includes all channel sample results from Gossan 1 and Gossan 2. Appendix 1b includes new rockchip sample locations and results. Appendix 2 includes locations and geological descriptions of

Criteria	JORC Code explanation	Commentary
		mineralisation encountered in channels at gossan 1 East and Gossan 1 West Extension.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No other substantive exploration data reported.
Further work	 The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further, extension, soil and rockchip sampling will continue on extensions of the trends. In order to locate the potential high-grade polymetallic sulphide deposits within the mineralised corridors, Induced polarisation (IP) geophysics will be carried out to detect the sulphide bodies and their spatial relationship to surface gossan and sulphide occurrences. The results received to date have enabled the Company to define the key target zones within the two mineralised corridors. The IP geophysical programs will be designed to detect chargeable and conductive sulphide targets within the identified corridors and specifically below the identified gossans and surface sulphide occurrences. Based on initial discussions with Namibian-based drilling contractors, suitable drilling rigs have been identified which can access the hilly terrain to test below the most significant high-grade gossan and sulphide outcrop areas. Drilling will also be required to test IP/Resistivity targets up to 300m below surface in the first phase. Drilling of the identified high-grade (Cu, Ag, Zn, Pb, Ge) sulphide targets is planned to commence after receipt of the channel-sampling and IP/Resistivity geophysical results and modelling, and once drill targeting is completed Landholder access agreements are in place, and access tracks to the main gossan and
		and access tracks to the main gossan and sulphide occurrences established, so that further work can be progressed as rapidly as possible after geophysical programs.