

Intensely Copper-Zinc Mineralised Zones Intercepted Below High-Grade Copper-Silver-Zinc-Lead-Germanium Gossans at Graceland

- **Drill intersections relate to Induced Polarisation anomalies identified down-plunge east of high-grade Gossan 1 and Gossan 1 East outcrops, which represent priority 'Tsumeb-like' sulphide drilling targets**

Golden Deep's Limited (ASX:GED) is delighted to report continued exploration success on multiple fronts at its high-grade **Graceland Critical Metals Prospect^{0,1}**, located just 20km south of the world-class **Tsumeb copper-silver-zinc-lead-germanium mine²** in Namibia's prolific Otavi Mountain Land metallogenic belt (Figure 1).

- **Intensely-mineralised drilling intersections have been produced directly below the high-grade Gossan 1 outcrop at Graceland which produced spectacular Cu-Ag-Zn-Pb-Ge grades in previous rockchip and channel sampling (see Figure 2), including:**
 - 3m @ **11.2% Cu, 294 g/t Ag, 8.7% Zn** incl. 0.5m @ **31.7% Cu, 961 g/t Ag, 15.3% Zn, 79 g/t Ge** in A6CL003³
 - 2.5m @ **11.3% Cu, 237 g/t Ag, 11% Zn** incl. 0.5m @ **26.2% Cu, 563 g/t Ag, 23.5% Zn, 103 g/t Ge** in A6CL004³
- **The new drilling includes two diamond holes (GLBPD003 and GLBPD004) drilled beneath the channel sampling intersections (see Gossan 1 cross section, Figure 3) which both produced strongly mineralised intersections:**
 - » **GLBPD003: 11.5m (downhole) strongly-mineralised intersection* including:**
 - a 2m zone of 15% malachite (copper carbonate), 5% zinc oxide, iron oxide mineralisation, and,
 - a 9.5m zone of 1-10% sphalerite (zinc sulphide) & galena (lead-sulphide) stringers, minor malachite.
 - » **GLBPD004: 4.7m (downhole) strongly-mineralised intersection* including:**
 - a 1.2m zone 6-10% malachite patches and clots in hangingwall, then,
 - a 3.5m zone of 5-15% malachite & zinc oxide mineralisation with iron oxide to 4.7m.

***Cautionary Note in relation to disclosure of visual estimates of mineralisation as described in Appendix 2:**

The Company cautions that visual estimates of mineralisation abundance should never be considered a proxy or substitute for laboratory analyses. Laboratory assays are required to determine representative grades and intervals of the elements associated with the visible mineralisation reported from geological logging.

- **Review and preliminary modelling of data from extensive Induced Polarisation (IP) and Resistivity (Res) survey across 2km target zone has generated IP chargeability anomalies directly east of the Gossan 1 channels and recent drilling intersections and south of Gossan 1 East (see Figure 4). These IP anomalies represent priority targets for sulphide mineralisation down plunge of the high-grade gossans.**
- **A larger and stronger IP and low resistivity (conductive) anomaly has been identified further east of Gossan 1 East, extending for 200m to the edge of the survey where it remains completely open. This larger IP-Res anomaly has been detected to at least 200m below surface and is 'blind' (not associated with a gossan).**
- **The 3-D modelling of IP and resistivity anomalies is ongoing. Final IP anomaly models will be integrated with rockchip and shallow drilling results to define priority 'Tsumeb-type' critical metals sulphide drilling targets.**
- **In the meantime, shallow diamond drilling continues to test the entire thickness of mineralisation at Gossan 1 East, where previous channel sampling intersected 3.5m @ **12.6% Cu, 79g/t Ag, 403g/t Sb** incl. 1.0m @ **20.1% Cu, 176g/t Ag, 43g/t Ge, 1,205g/t Sb⁴** (see Figure 2). Diamond drilling will also test Gossan 1 West (copper rockchip assays to **50.6% Cu⁵**) and Gossan 2 North (rockchip assays to **26.9% Cu, 3179 g/t Ag, 24.4% Pb⁵**).**
- **Additionally, latest results from ongoing soil and rockchip sampling at Graceland include results of up to **2.32% Cu & 223 g/t Ag** and **2.31% Cu & 105g/t Ag** – extending the strongly-mineralised Graceland Corridor a further 500m to the west to over 3km strike-length (see Figure 2).**

Golden Deep CEO Jon Dugdale commented:

"We are delighted to have drill-intersected such a wide and strongly mineralised zone under the Gossan 1 outcrop, which shows the intense copper (silver-zinc) mineralisation intersected in previous channel sampling continues below the gossan, with a wide zone of strong sphalerite (zinc) and galena (lead) mineralisation extending well into the footwall."

The shallow diamond drilling program is continuing to test under other zones which previously produced spectacular rockchip grades of up to **50.6% Cu** at Gossan 1 West and **26.9% Cu, 3179 g/t Ag and 24.4% Pb** at Gossan 2 North. Drilling testing continues across the entire thickness of mineralisation at Gossan 1 East, where previous channel sampling intersected **3.5m @ 12.6% Cu, 79g/t Ag, 403g/t Sb** including **1.0m @ 20.1% Cu, 176g/t Ag, 43g/t Ge, 1,205g/t Sb** within a **7.0m true thickness zone grading 7.2% Cu, 59 g/t Ag, 1.2% Pb, 58 g/t Ge, 330 g/t Sb**.

The successful intersection of significant mineralisation with the initial drilling comes as initial modelling of IP and resistivity survey results has generated **IP chargeability and low resistivity anomalies which represent potential sulphide mineralisation to the east and down plunge of the recent highly-mineralised diamond drilling intersections at Gossan 1, and south of the strongly mineralised Gossan 1 East**. In addition, a **large and strongly-anomalous IP-low resistivity anomaly occurs at the eastern end of the Gossan 1 corridor and extends to the eastern edge of the survey where it remains completely open**. This larger IP-Res anomaly has been detected to at least 200m below surface and is 'blind' in that it is not associated with gossan or sulphide outcrops.

Additional 3-D modelling of IP-Res anomalies is in progress and models will be integrated with rockchip and shallow drilling results to define priority 'Tsumeb-type' critical metals sulphide targets for our much-anticipated follow-up drilling program at the Graceland discovery."

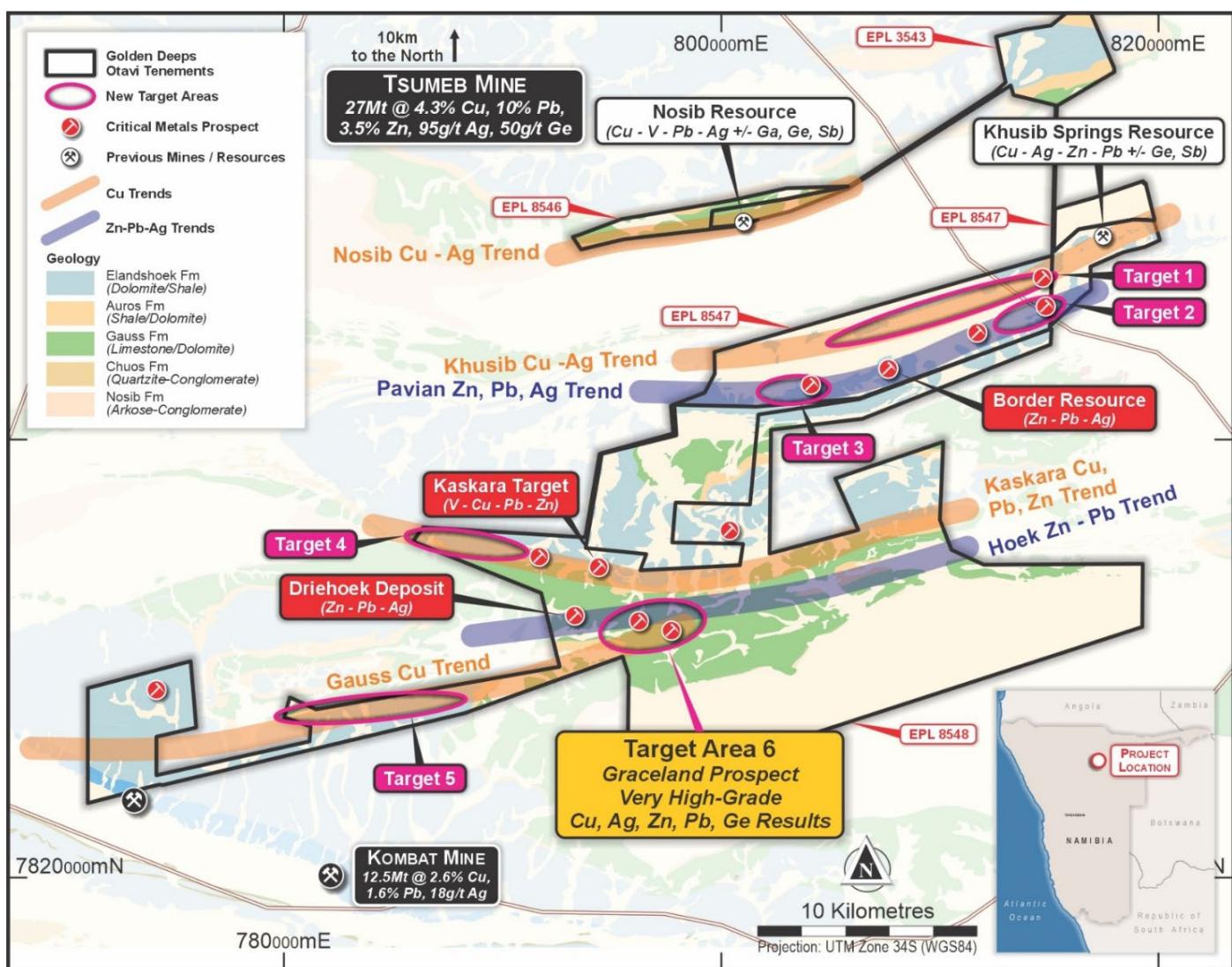


Figure 1: Central Otavi Critical Metals Project showing key prospects, "Tsumeb-type" target areas including Graceland Prospect

Golden Deep Limited (ASX: GED) (Golden Deep or the Company) is pleased to announce it has intersected **wide and intensely mineralised zones in drilling which tested below Gossan 1, in addition to the previous test drilling intersections at Gossan 1 East**. The Company has also outlined a series of IP chargeability anomalies **within a 600m zone extending east/down plunge of the Gossan 1 and Gossan 1 East outcrops which indicate 'Tsumeb-type' sulphide targets at the eastern end of Gossan 1 Corridor at the Graceland prospect**, which is located within the Company's 440km² tenement holdings in Namibia's world-class Otavi Mountain Land Critical Metals Belt (see location, Figure 1, and Figure 2 below).

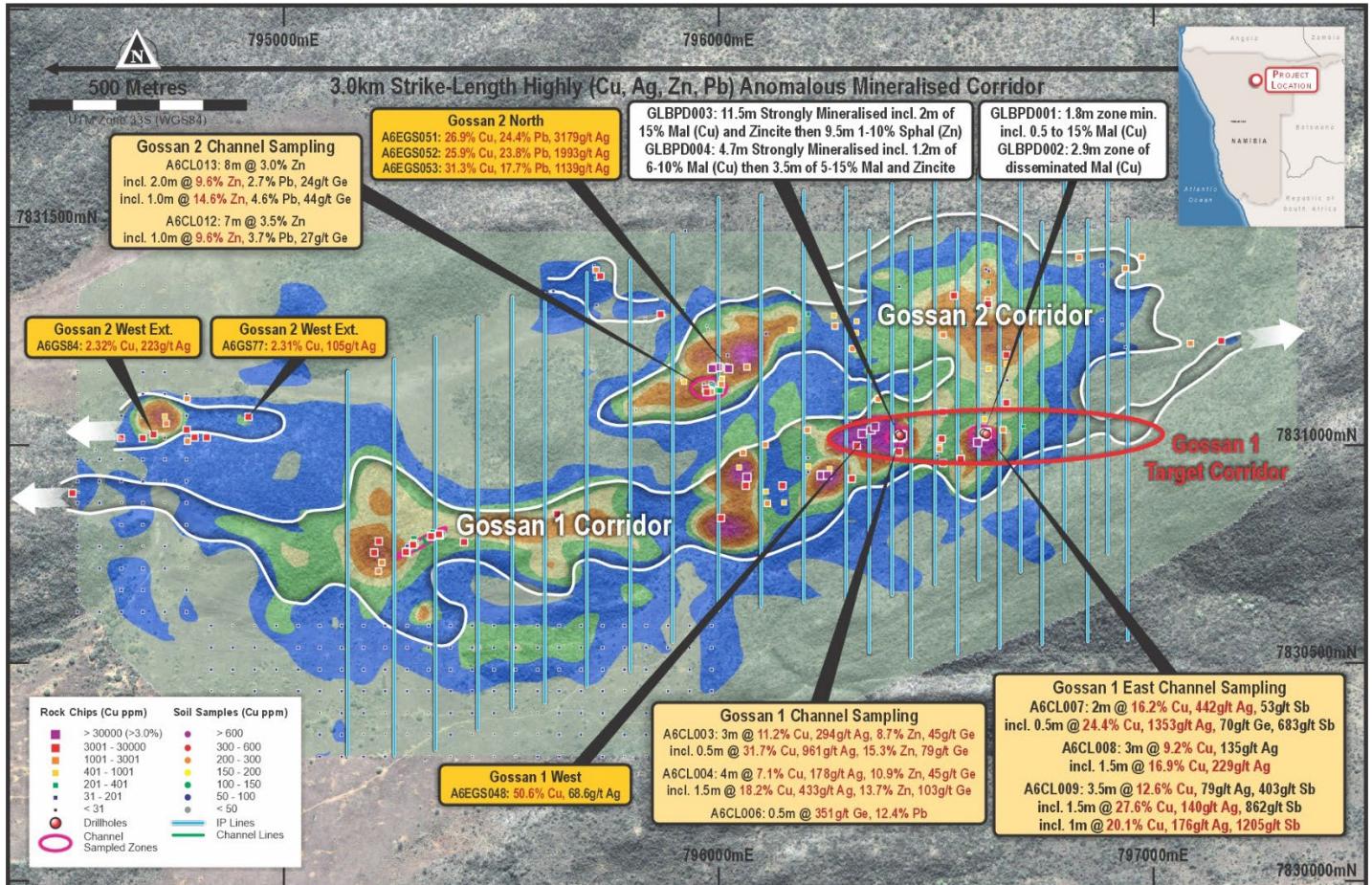


Figure 2: Graceland mineralised corridor, with rockchip & channel sampling, IP-Res survey lines and new drillhole locations

Ongoing Diamond Drilling Program

The lightweight man-portable diamond drilling rig purchased by the Company has completed further drilling which included **two NQ sized diamond drill-core holes which successfully tested across the entire mineralised zone under Gossan 1 outcrop**. Previous channel sampling at Gossan 1 included:

- **3m @ 11.2% Cu, 294 g/t Ag, 8.7% Zn incl. 0.5m @ 31.7% Cu, 961 g/t Ag, 15.3% Zn, 79 g/t Ge in A6CL003³**
- **2.5m @ 11.3% Cu, 237 g/t Ag, 11% Zn incl. 0.5m @ 26.2% Cu, 563 g/t Ag, 23.5% Zn, 103 g/t Ge in A6CL004³**

The shallow drill-testing at Gossan 1 includes two NQ core sized (49mm) **diamond drillholes beneath the channel sampling intersections** (see cross section, Figure 3, below).

Drillhole **GLBPD003** was collared in the gossan and continued through **2m downhole of intense iron-oxide and 20% malachite-azurite (copper carbonate) and zinc oxide mineralisation** before passing into fresh to semi-oxidised dolomite with 1-10% stringers and massive sulphide lenses of sphalerite (zinc sulphide) and galena (lead-sulphide) with malachite in the footwall, which continue to **11.5m downhole** - the hole being completed at 12.5m downhole.

Drillhole **GLBPD004** was collared in the southern, hangingwall, of Gossan 1 and intersected **6-10% patches and clots of malachite to 1.2m, then a 3.5m zone of iron-oxide with 5-15% copper and zinc oxide mineralisation from 1.2m to 4.7m** before intersecting a cavity which may be stoped extensions of shallow historical workings.

The two drillholes have, combined, intersected across the entire width of steeply-dipping mineralisation which occurs over a true thickness of approximately 7m. This includes a 1m hangingwall zone of malachite (Cu) stringers

and clots, a 2.5m true thickness of intensely gossanous iron-oxide, malachite-azurite (Cu) and zinc oxide mineralisation and a 3.5m true thickness footwall zone of sphalerite (zinc sulphide) and galena (lead-sulphide) stringers and massive sulphide lenses.

The mineralised drill-core from these two holes has been submitted for multi-element analysis and results are expected shortly.

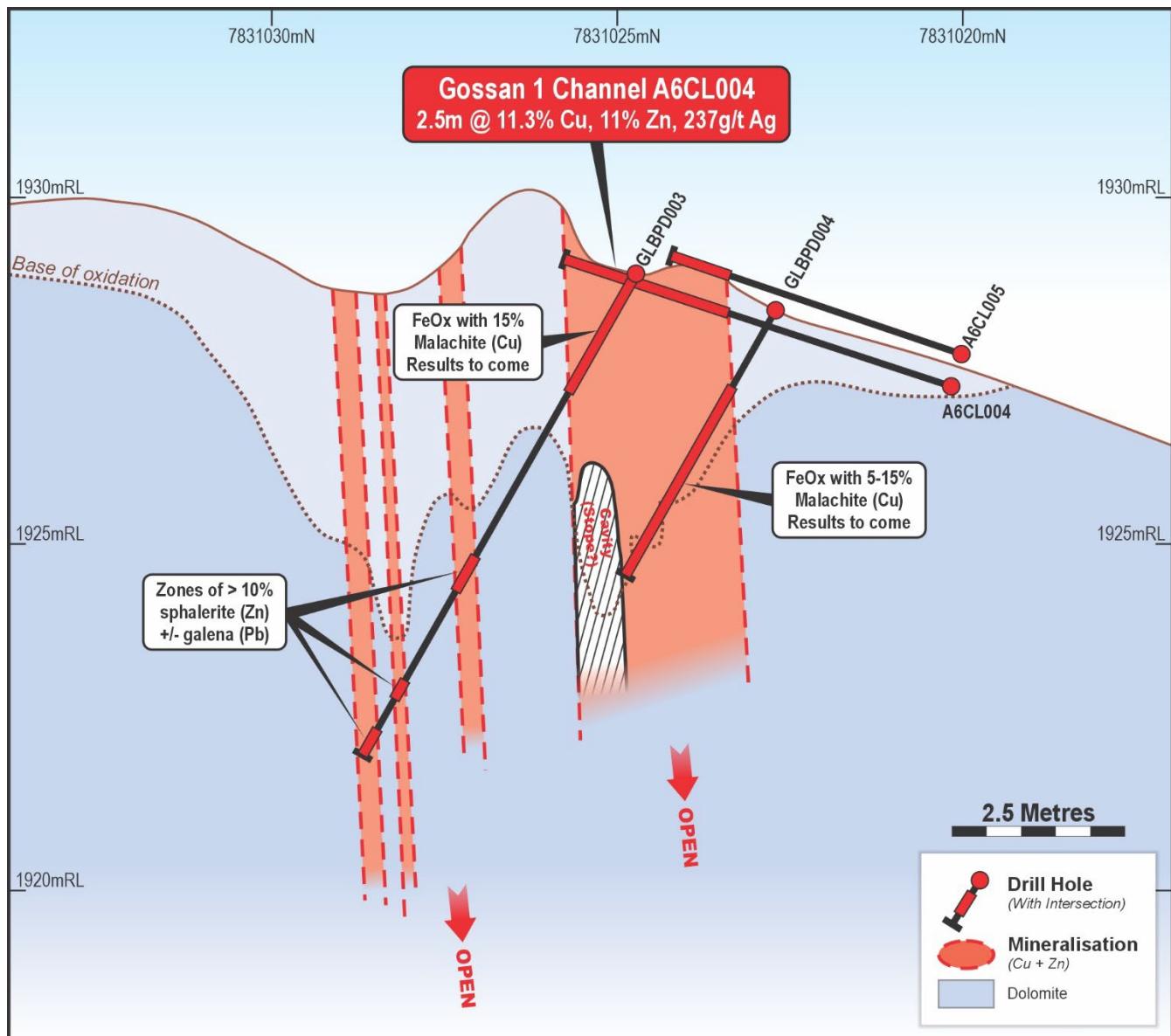


Figure 3: Cross section through Gossan 1, 796,416.5mE, showing previous channel intersections and drillholes GLBP003 & 004

Drilling with the lightweight diamond drilling rig has continued, but has been restricted to shallow depths of less than 15m due to the weight of the rod-string, which needs to be “pulled” after each 0.5m run. The company has purchased a rigid frame or slide with a pulley system to allow deeper, more stable, drilling operations (see Image 1). Additional rods have also been purchased to allow drilling to 30m depth. Drilling has commenced testing under the entire Gossan 1 East mineralised zone which previously had two test-holes completed, including GLBP001 which intersected mineralised sheared and silicified dolomite with semi-massive zones of chalcocite (Cu_2S) and disseminated/veins of malachite and azurite (copper-carbonate – weathered after sulphides). Previous channel sampling at Gossan 1 East included the following very high-grade intersections:

- 3.5m @ 12.6% Cu, 79g/t Ag, 403g/t Sb incl. 1.0m @ 20.1% Cu, 176g/t Ag, 1,205g/t Sb in A6CL009⁴
- 3.0m @ 9.2% Cu, 135 g/t Ag, incl. 1.5m @ 16.9% Cu, 229 g/t Ag in Gossan 1 East Channel A6CL008⁴
- 2.0m @ 16.2% Cu, 442 g/t Ag incl. 0.5m @ 24.4% Cu, 1,353 g/t Ag, 70 g/t Ge, 683 g/t Sb in A6CL007⁴

Drilling will continue to test other mineralised outcrops including at the **Gossan 1 West zone (copper rockchip assays to 50.6% Cu)⁵** and at **Gossan 2 North (rockchip assays to 26.9% Cu, 3179 g/t Ag, 24.4% Pb)⁵** (see Figure 2).

Induced Polarisation and Resistivity Survey

Prior to the shallow diamond drilling program, the Company **completed its Induced Polarisation and Resistivity (IP-Res) Survey across a 2km portion of the 2.5km strike-length and 1km wide Graceland mineralised corridor** (see Figure 4). The IP-Res program was designed to identify sulphide-mineralised "Tsumeb-type" target zones within the highly mineralised corridors at the Graceland Prospect (see Figure 2)⁴.

The results of the IP-Res survey have been independently reviewed and initial 2-D inversion modelling of the IP-Res lines has identified a series of IP chargeability anomalies within a 600m zone extending east/down plunge of the **Gossan 1 and Gossan 1 East outcrops** (see Figures 2 and 4). These sectional inversion models have been modelled in 3-D using Leapfrog software and show **IP anomalies directly east of Gossan 1 and south of Gossan 1 East occurring within an east-west structural (fault) corridor which is associated with the peak of the large Cu-Ag-Zn soil anomalies** (see Figure 2 and 3-D model, Figure 4, below).

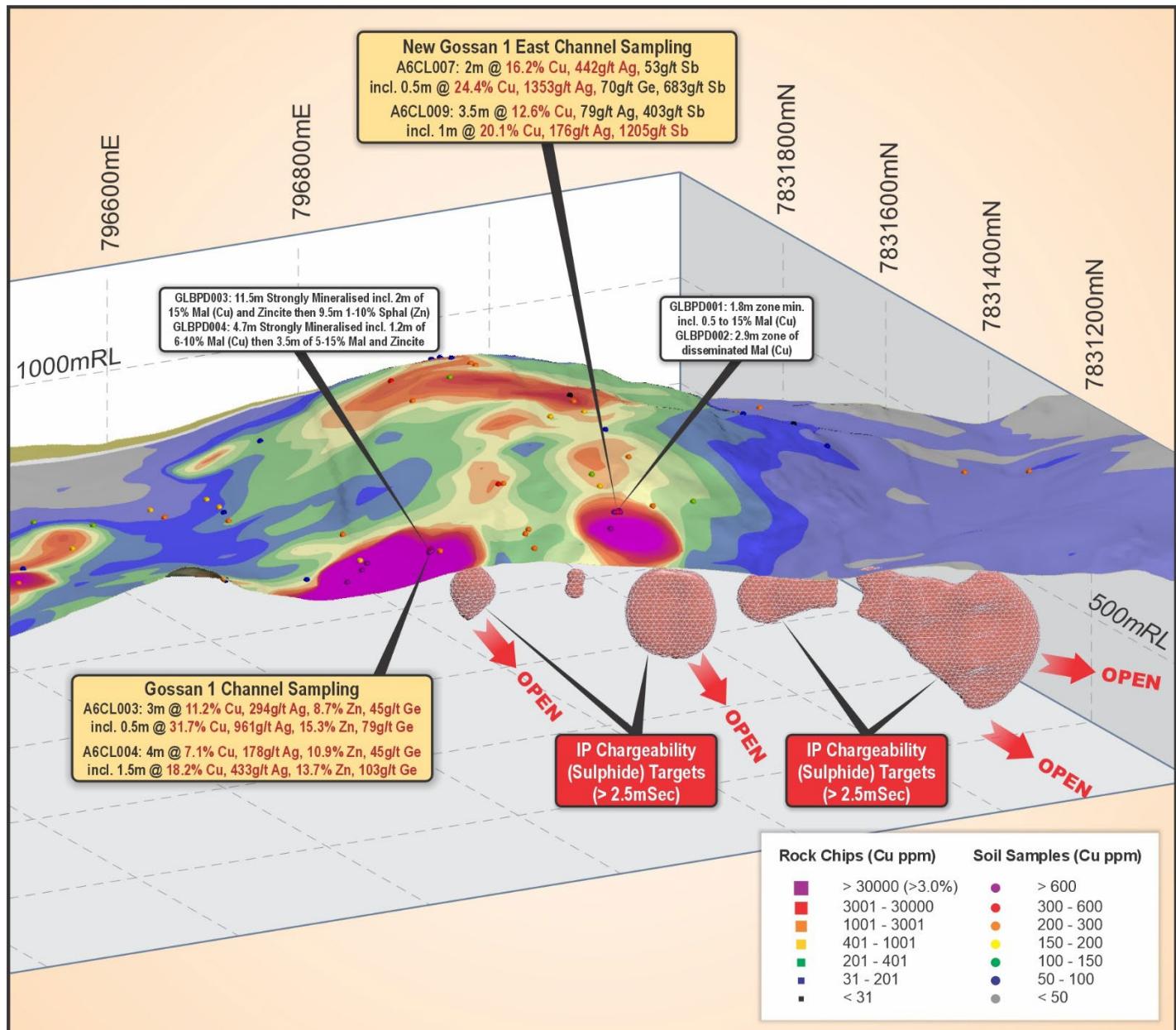


Figure 4: 3-d image, Graceland Prospect with soil & rockchip anomalies (Cu) and IP chargeability anomalies in Gossan 1 corridor

A larger and stronger IP and coincident low resistivity (conductive) anomaly occurs further east of Gossan 1 East and extends to the edge of the survey where it remains completely open. This larger IP-Res anomaly has been detected to at least 200m below surface and is 'blind', being not associated with a gossan/sulphide outcrop (see Figure 4). The IP Chargeability anomalies detected may represent chargeable sulphide zones in fresh rock below/down-plunge of the strongly mineralised gossans and channel and diamond drilling intersections.

Planned Drilling of Priority Sulphide Targets

Computer-based full 3-D modelling of the IP-chargeability and Resistivity results is in progress across the entire survey. The results of this work are expected shortly and will be integrated with geological profile mapping, soil anomalies, rockchip/channel sampling and shallow drilling data - to generate 'Tsumeb-type' Cu-Ag-Zn-Pb-Ge-Sb bearing sulphide drilling targets⁴ for deeper drill-testing.

Suitable drilling contractors (for hilly-terrain) have been identified and have provided indicative quotes for a more extensive and deeper drilling program which will be designed to test for primary critical metals (Cu-Ag-Zn-Pb-Ge-Sb-Ga) sulphide zones. These quotes will be advanced to final contract negotiations once drilling targets are fully defined and modelled. In the meantime, shallow drilling will continue with the lightweight diamond drilling rig while weather permits.

Soil and Rockchip Sampling

Soil and rockchip sampling has continued on the Otavi Central Project and includes extensions of the sampled zone at Graceland a further 500m to the west, and to over 3km strike-length (see Figure 2). A total of 267, 50m x 50m, soil samples and 13 new mineralised rockchip samples were collected. The results of further soil and rockchip sampling include up to **2.32% Cu, 223 g/t Ag** in A6GS084 and **2.31% Cu, 105g/t Ag** in A6GS077 and have **extended the strongly mineralised Graceland Corridor a further 500m to the west, and to over 3km strike-length** (see Figure 2). See Appendix 3, new rockchip sampling results.

Image 1: Graceland Prospect. Lightweight diamond drilling rig testing Gossan 1 East mineralised zone - with new frame.

About Golden Deep Otavi Mountain Land Critical Metals Projects

Golden Deep, through its 80% owned subsidiaries Huab Energy Pty Ltd and Metalex Mining and Exploration Pty Ltd (Metalex), holds six Exclusive Prospecting Licences (EPLs) covering **over 440km²** in Namibia's world-class Otavi Mountain Land Metallogenic Belt (see Figure 1 and Figure 5, below).

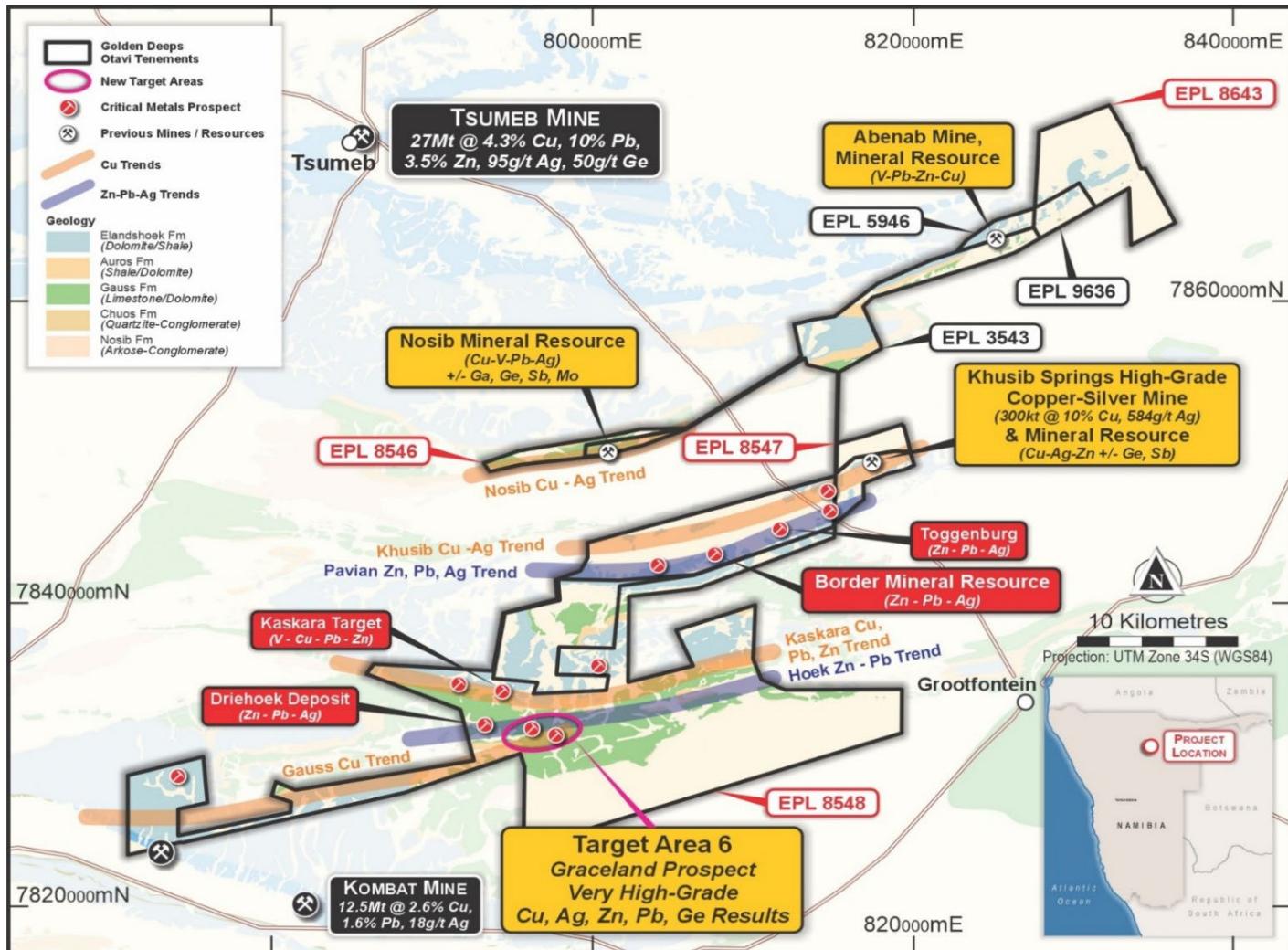


Figure 5: Golden Deep's Otavi Mountain Land Projects, Mineral Resources and key prospects with major mines

The Otavi Mountain Land is host to major, historically mined high-grade polymetallic deposits such as the world-class **Tsumeb mine**, which produced **27Mt @ 4.3% Cu, 10% Pb, 3.5% Zn, 95 g/t Ag** and **50 g/t Ge²**, and the **Kombat mine**, with recorded historical production of **12.5Mt @ 2.6% Cu, 1.6% Pb, 18 g/t Ag⁶** (see Figure 5).

Golden Deep has several advanced base and critical-metals projects in the Otavi Mountain Land. Established resources and prospects include high-grade, supergene, vanadium +/- copper, lead, zinc and silver Mineral Resources as well as primary copper-silver-zinc-lead (+/- Ge, Ga, Sb) sulphide deposits (see Figure 5).

The Company has defined new Mineral Resources for the **Abenab high-grade vanadium (lead, zinc) project⁷**, the **Nosib vanadium-copper-lead-silver (gallium) deposit⁷** and the **Khusib Springs silver-copper (zinc-lead) deposit⁸**.

The Company previously announced **high-grade gallium with copper, vanadium, lead, silver and highly anomalous germanium and antimony** results⁹ from surface at the **Nosib discovery** (Figure 3), and further metallurgical work is planned to enhance recovery of these critical metals before development studies are finalised.

Golden Deep's **Central Otavi Critical Metals Project¹** includes a **Zn-Pb-Ag Mineral Resource at the Border prospect**; advanced exploration prospects at the **Driehoek (Zn-Pb-Ag)** and **Kaskara (V-Cu-Pb-Zn, Ge)**, and multiple target areas for **'Tsumeb type' Cu-Pb-Zn-Ag-Ge deposits** with gallium and antimony potential.

The Company has continued its aggressive exploration program in priority target areas on the Central Otavi Project, with initial focus in areas that show "**Tsumeb-type**" Cu-Ag-Zn-Pb (+/- Ge, Ga, Sb) potential (see Figure 5).

The initial area of exploration at **Graceland Prospect** has produced exceptional copper, silver, zinc, lead and germanium results from rockchip sampling of multiple gossan and sulphide occurrences^{1,5}. These outstanding results are from a large mineralised corridor defined by highly anomalous Cu-Zn-Pb-Ag soil sampling results, now over a 3.0km strike-length in a northeast-southwest direction and 1km wide in a northwest-southeast direction (Figure 2).

The mineralisation identified to date at **Graceland** includes high-grade copper, silver, zinc, lead as well as germanium and antimony, which is an analogous suite of metals to the world-class **Tsumeb** deposit, 20km to the north (see Figure 5). The Tsumeb mine is renowned for producing over 200 different ore-minerals, some of which are found nowhere else on Earth². The Tsumeb deposit is a steeply dipping carbonate hosted, fault-breccia / cave-fill sulphide deposit. The surface expression of the Tsumeb deposit was a modest sized malachite-iron oxide gossan which was mined by historical artisanal miners. The main part of the deposit was located below surface and was mined to 1500m depth, and was much larger than the surface gossan indicated.

Channel sampling across the most significant gossan and sulphide outcrops at Graceland has produced significant high-grade intersections of copper, silver, zinc, lead, germanium and antimony^{3,4}. These results confirm the Tsumeb-like characteristics of these highly mineralised zones.

A detailed IP-Resistivity (IP-Res) survey has been completed over the 2.5km strike-length x 1km wide Graceland mineralised corridor. The aims of the IP survey were to simultaneously detect near surface sulphide deposits as well as deeper 'Tsumeb-type' sulphide targets. The results of the IP-Res survey have been reviewed by an independent expert, and 3-d modelling of IP-Chargeability and (low) Resistivity anomalies is in progress prior to integrated drill-target definition being carried out - **to target high-grade Cu, Ag, Zn, Pb, Ge (+/- Sb, Ga) bearing sulphide discoveries.**

References

- ⁰ Golden Deep Ltd (ASX:GED) 1 April 2025. Acquisition of Central Otavi Critical Metals Project.
- ¹ Golden Deep Ltd ASX 06 August 2025. Exceptional Otavi Copper Silver Zinc and Germanium Grades.
- ² Tsumeb Mine (Ongopolo Mine), Tsumeb, Oshikoto Region, Namibia, <https://www.mindat.org/loc-2428.html>.
- ³ Golden Deep Ltd ASX 02 October 2025. New Exceptional Copper, Silver, Germanium Results from Graceland.
- ⁴ Golden Deep Ltd ASX 14 October 2025. New Spectacular Cu Ag Ge Channel Results at Graceland.
- ⁵ Golden Deep Ltd ASX 21 August 2025. Further Spectacular Copper Silver with Germanium in Otavi.
- ⁶ Kombat Mine, Namibia. Porter Geo Database: <http://www.portergeo.com.au/database/mineinfo.asp?mineid=mn2905>.
- ⁷ Golden Deep Ltd ASX 25 June 2024: New Mineral Resources for Otavi V-Cu-Pb-Zn-Ag Deposits.
- ⁸ Golden Deep Ltd ASX 22 October 2024: New Silver-Copper Resource Highlights Khusib Potential.
- ⁹ Golden Deep Ltd ASX 09 April 2025: Further High-Grade Gallium Identified at Nosib.
- ¹⁰ King C M H 1995. Motivation for diamond drilling to test mineral extensions and potential target zones at the Khusib Springs Cu-Pb-Zn-Ag deposit. Unpublished Goldfields Namibia report.

This announcement was authorised for release by the Board of Directors.

ENDS

Please refer to the Company's website or contact:

Jon Dugdale
Chief Executive Officer
Golden Deep Limited
+61 (08) 9481 7833

Michael Muhling or Tanya Newby
Joint Company Secretaries
Golden Deep Limited
+61 (08) 9481 7833

Cautionary Statement regarding Forward-Looking Information:

This document contains forward-looking statements concerning Golden Deep Ltd. Forward-looking statements are not statements of historical fact and actual events and results may differ materially from those described in the forward-looking statements as a result of a variety of risks, uncertainties and other factors. Forward-looking statements are inherently subject to business, economic, competitive, political and social uncertainties and contingencies. Many factors could cause the Company's actual results to differ materially from those expressed or implied in any forward-looking information provided by the Company, or on behalf of, the Company. Such factors include, among other things, risks relating to additional funding requirements, metal prices, exploration, development and operating risks, competition, production risks, regulatory restrictions, including environmental regulation and liability and potential title disputes. Forward looking statements in this document are based on the company's beliefs, opinions and estimates of Golden Deep Ltd as of the dates the forward-looking statements are made, and no obligation is assumed to update forward looking statements if these beliefs, opinions and estimates should change or to reflect other future developments.

Competent Person Statement:

The information in this report that relates to exploration results, Mineral Resources and metallurgical information has been reviewed, compiled and fairly represented by Mr Jonathon Dugdale. Mr Dugdale is the Chief Executive Officer of Golden Deep Ltd and a Fellow of the Australian Institute of Mining and Metallurgy ('FAusIMM'). Mr Dugdale has sufficient experience, including over 37 years' experience in exploration, resource evaluation, mine geology and finance, relevant to the style of mineralisation and type of deposits under consideration to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee ('JORC') Australasian Code for Reporting of Exploration Results, Minerals Resources and Ore Reserves. Mr Dugdale consents to the inclusion in this report of the matters based on this information in the form and context in which it appears. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

ASX Listing rules Compliance:

In preparing this announcement the Company has relied on the announcements previously made by the Company as listed under "References". The Company confirms that it is not aware of any new information or data that materially affects those announcements previously made, or that would materially affect the Company from relying on those announcements for the purpose of this announcement.

APPENDIX 1: Graceland Diamond Drillhole Details – GLBPD001, 002, 003, 004

DH_ID	Hole_Type	Coordinate System	Easting	Northing	RL	Azim_mag°	Dip°	Hole Length (m)
GLBPD001	DD	WGS84_33S	796,610.0	7,831,029.8	1,936.9	350	-60	1.82
GLBPD002	DD	WGS84_33S	796,616.0	7,831,026.8	1,936.9	350	-60	2.96
GLBPD003	DD	WGS84_33S	796,416.5	7,831,024.8	1,931.8	330	-60	12.5
GLBPD004	DD	WGS84_33S	796,418.0	7,831,023.0	1,931.8	330	-60	4.68
								21.96m

APPENDIX 2: Descriptions of Mineralisation – GLBPD001, 002, 003, 004

Hole_ID	From	To	Weath.	Min. 1	%	Texture	Gr. Size	Min. 2	%	Texture	Min. 3	%	Texture	Comments
GLBPD001	0.0	0.7	Mod Ox	Malachite	30	Pervasive	Fine Grn	Azurite	1	Patchy				Pervasive, fracture-controlled malachite with rare vuggy; azurite increasing toward footwall. Local brecciation.
GLBPD001	0.7	1.8	Wk Ox	Malachite	1	Fracture	Fine Grn							Light grey, silicified dolomite with fracture-fill malachite and rare fine malachite clots.
GLBPD002	0.0	2.2	Fresh	Malachite	1	Fracture	Fine Grn	Azurite	0.2	Patchy	Chalcocite	0.2	Patchy	Massive dolomite; local fractures hosting malachite stringers with rare clots; trace azurite and chalcocite present.
GLBPD002	2.2	3.0	Fresh	Malachite	1	Patchy	Fine Grn							Light grey, silicified dolomite with trace malachite.
GLBPD003	0.0	2.0	Str Ox	Malachite	20	Pervasive	Fine Grn	Zincite	10	Patchy	Azurite	1	Patchy	Moderately to strongly oxidised gossan with malachite, azurite and zinc oxides (zincite).
GLBPD003	2.0	2.5	Fresh	Malachite	1	Patchy	Fine Grn							Cherty dolomite with patchy malachite clots.
GLBPD003	2.5	3.2	Wk Ox	Sphalerite	1	Dissem.	Fine Grn	Galena	0.2	Dissem.				Cherty dolomite, locally brecciated, with trace sphalerite and fine galena.
GLBPD003	3.2	5.9	Wk Ox	Sphalerite	10	Fracture	Fine Grn	Galena	1	Patchy	Malachite	0.2	Patchy	Cherty dolomite regular sphalerite stringers; fractures infilled with Fe-oxides, galena, and trace malachite.
GLBPD003	5.9	6.5	Mod Ox	Malachite	1	Patchy	Fine Grn							Gossanous dolomite with patchy malachite observed.
GLBPD003	6.5	8.1	Wk Ox	Malachite	1	Patchy	Fine Grn							Grey-pink dolomite, locally laminated; zones of matrix-supported, sub-rounded dolomite clasts; rare patchy malachite observed.
GLBPD003	8.1	11.5	Wk Ox	Sphalerite	10	Fracture	Fine Grn	Galena	1	Patchy				Dolomite with moderate to strong sphalerite stringers and rare galena clots.
GLBPD003	11.5	12.5	Fresh											Light grey, massive dolomite.
GLBPD004	0.0	1.2	Fresh	Malachite	6	Fracture	Fine Grn	Zincite	2	Patchy				Dolomite with fracture-fill malachite, commonly associated with Fe-oxides or goethite; rare fine chalcocite clots.
GLBPD004	1.2	2.0	Str Ox	Malachite	15	Pervasive	Fine Grn	Zincite	10	Patchy				Gossan with pervasive malachite and zinc oxide (zincite).
GLBPD004	2.0	3.0	Wk Ox	Malachite	5	Patchy	Fine Grn	Zincite	1	Fracture				Grey dolomite with fair malachite; gossanous at 2.37 m.
GLBPD004	3.0	3.4	Str Ox	Malachite	10	Pervasive	Fine Grn	Sphalerite	2	Fracture				Weathered/argillic gossan with pervasive malachite. Sphalerite patches.
GLBPD004	3.4	4.7	Fresh	Malachite	2	Patchy	Fine Grn	Sphalerite	2	Fracture				Grey dolomite with fair malachite; local fractures with strong Fe-oxide development and local brecciation observed.

APPENDIX 3: Gossan 2 West Rockchip Sampling Descriptions of Mineralisation and Assays

SampleID	Grid	Grid East	Grid North	Rockchip Sample mineralisation Descriptions	Cu%	Zn%	Pb%	Ag ppm	Sb ppm	Ge ppm
A6GS76	WGS84_33S	794,779	7,831,012	Light grey dolomite, with malachite sporadic specs	0.125	0.010	<0.01	11	8.6	<1
A6GS77	WGS84_33S	794,795	7,831,021	Silicous dolomite with malachite, often in vugs, possible dioprase	2.309	0.082	0.006	105	33.9	2
A6GS78	WGS84_33S	794,777	7,831,038	Dolomite, locally brecciated with a silica matrix; malachite present with rare chalcocite clots.	0.420	0.015	0.005	18	23.7	<1
A6GS79	WGS84_33S	794,778	7,831,109	Dolomite, locally brecciated with a silica matrix; malachite present with rare chalcocite clots.	0.239	0.010	0.018	<1	9.1	<1
A6GS80	WGS84_33S	794,732	7,831,099	Dolomite, locally brecciated, with malachite; rare malachite clots observed.	0.052	0.010	4.373	14	6.4	<1
A6GS81	WGS84_33S	794,730	7,831,052	Dolomite with galena stringers, commonly associated with dolospar alteration.	0.275	0.010	0.010	57	11.6	<1
A6GS83	WGS84_33S	794,676	7,831,019	Grey dolomite with fracture-controlled malachite and minor chalcocite, locally associated with Fe-oxides.	0.758	0.052	0.007	28	20	<1
A6GS84	WGS84_33S	794,701	7,831,027	Intensely silicified (cherty) dolomite with malachite.	2.318	0.097	0.013	223	52.1	5
A6GS85	WGS84_33S	794,626	7,831,019	Silicified dolomite with malachite, commonly associated with dolospar alteration and Fe-oxides.	0.739	0.049	0.008	28	17.9	<1
A6GS87	WGS84_33S	794,514	7,830,893	Intensely silicified (cherty) dolomite with malachite; rare azurite and fine chalcocite clots.	1.536	0.112	0.030	71	137.6	<1

APPENDIX 4: JORC 2012 Table 1

Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	<ul style="list-style-type: none"> <i>Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</i> <i>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</i> <i>Aspects of the determination of mineralisation that are Material to the Public Report.</i> <i>In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information.</i> 	<ul style="list-style-type: none"> The new lightweight drilling programs has included the completion of four completed drillholes for 21.96m at the Gossan 1 and Gossan 1 East outcrops. Drilling samples will be half cored and one half (approximately 2 to 3kg) will be submitted to the laboratory for preparation and analysis. A total of 13 rockchip samples including 10 analysed were collected from outcrops at Gossan 2 West Ext. (see Figure 2). Rockchip, channel and drilling samples are prepared by Intertek Genalysis in Tsumeb, Namibia. Here the samples are sorted, dried, crushed and pulverised in a vibrating pulveriser. A ~300g sub sample was despatched to Intertek Genalysis in Perth for analysis. Rockchip, channel and drilling samples samples are analysed at Intertek, Perth, via "ore-grade" method, FP1/OM42 = Sodium Peroxide Fusion dissolution then ICP-MS or ICP-OES analysis. Samples were analysed for a 43 element package. In addition, a 25g charge was taken for fire assay for Au, Pt, Pd. Appendix 1 includes all drillhole locations and other details. Appendix 2 contains geological descriptions of mineralisation encountered in the drilling. Appendix 3 contains rockchip sample locations, descriptions and key element assays grades. The details of locations, sampling, analysis and results of previous rockchip samples, soil samples and channel sampling intersections were reported in the releases listed under "References", where referred to. Soil samples were analysed via method 4AR-MS/OES = Four Acid Aqua Regia digest prior to ICP Mass Spectroscopy (ICP-MS. Samples were analysed for a 53-element package.
Drilling techniques	<ul style="list-style-type: none"> <i>Drill type (e.g., core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).</i> 	<ul style="list-style-type: none"> Drilling reported is diamond drillcore, 49mm diameter, NQ.
Drill sample recovery	<ul style="list-style-type: none"> <i>Method of recording and assessing core and chip sample recoveries and results assessed.</i> 	<ul style="list-style-type: none"> The quality of diamond core samples is monitored by the logging of various

Criteria	JORC Code explanation	Commentary
	<ul style="list-style-type: none"> Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	<p>geotechnical parameters, and logging of core recovery and competency.</p> <ul style="list-style-type: none"> No relationship established between sample recovery and grade.
Logging	<ul style="list-style-type: none"> Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	<ul style="list-style-type: none"> Detailed diamond drillcore information on lithology, sample quality, structure, geotechnical information, alteration and mineralisation are collected in a series of detailed self-validating logging templates. Drillhole intervals descriptions of mineralisation are recorded for mineralised intervals (see Appendix 2) Logging is carried out to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies in the future. Rockchip sample descriptions of mineralisation are recorded for mineralised channel samples (see Appendix 3)
Sub-sampling techniques and sample preparation	<ul style="list-style-type: none"> If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	<ul style="list-style-type: none"> The new lightweight drilling programs has included the completion of four completed drillholes for 21.96m at the Gossan 1 and Gossan 1 East outcrops. Drilling samples will be half cored and one half (approximately 2 to 3kg) will be submitted to the laboratory for preparation and analysis. Standards are inserted at appropriate intervals. Rockchip samples are prepared by Intertek Genalysis in Tsumeb, Namibia. Here the samples were sorted, dried, crushed and pulverised in a vibrating pulveriser. A ~300g sub sample was despatched to Intertek Genalysis in Perth for analysis. The sample preparation technique is quality assured and appropriate for the sample type being analysed. For all sample types, the nature, quality and appropriateness of the sample preparation technique is considered adequate as per industry best practice.
Quality of assay data and laboratory tests	<ul style="list-style-type: none"> The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, 	<ul style="list-style-type: none"> The rockchip, channel and drilling samples are fully digested using "ore-grade" method, FP1/OM42 = Sodium Peroxide Fusion dissolution then analysed by ICP-MS or ICP-OES. Samples were analysed for a 43 element package. In addition, a 25g charge was taken for fire assay for Au, Pt, Pd.

Criteria	JORC Code explanation	Commentary
	<p><i>reading times, calibrations factors applied and their derivation, etc.</i></p> <ul style="list-style-type: none"> <i>Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established.</i> 	<ul style="list-style-type: none"> These methods are quality assured and appropriate for the samples analysed. For both rockchip and soil samples sampling procedures involve the insertion of registered Standards every 40 samples. Quality control reports are undertaken routinely to monitor the performance of field standards and duplicates, and laboratory accuracy and precision. Standards, blanks and duplicates are inserted at appropriate intervals in drillholes.
Verification of sampling and assaying	<ul style="list-style-type: none"> <i>The verification of significant intersections by either independent or alternative company personnel.</i> <i>The use of twinned holes.</i> <i>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</i> <i>Discuss any adjustment to assay data.</i> 	<ul style="list-style-type: none"> No drilling intersections reported in this release.
Location of data points	<ul style="list-style-type: none"> <i>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</i> <i>Specification of the grid system used.</i> <i>Quality and adequacy of topographic control.</i> 	<ul style="list-style-type: none"> Drilling, channel, rockchip and soil sampling locations are logged using a hand-held GPS (National Grid ID: WGS84_33S). Appendix 1 includes all drillhole locations. Appendix 2 contains geological descriptions of mineralisation encountered in the drilling. Appendix 3 contains rockchip sample locations, descriptions and key element assays grades.
Data spacing and distribution	<ul style="list-style-type: none"> <i>Data spacing for reporting of Exploration Results.</i> <i>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</i> <i>Whether sample compositing has been applied.</i> 	<ul style="list-style-type: none"> Data spacing and distribution used to determine geological continuity is dependent on the deposit type and style under consideration. Where a mineral resource is estimated, the appropriate data spacing, and density is decided and reported by the competent person. Drillholes are sampled at approximately 1m downhole intervals, but not across geological contacts. Previous rockchip channels were sampled on 0.5m to 1m intervals along a diamond saw cut channel. The channels are cut at a right angle to the strike of the mineralised zone to ensure representivity. The spacing of channels varies from 2m across short strike-length gossans to 20m across Gossan 1 West Ext. This spacing ensures continuity is established. No sample compositing is applied. Sampling is as unbiased as possible based on the dominating mineralised structures and interpretation of the deposit geometry.

Criteria	JORC Code explanation	Commentary
Orientation of data in relation to geological structure	<ul style="list-style-type: none"> Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	<ul style="list-style-type: none"> The orientation of drilling is orthogonal to the strike of the mineralised structure being tested. If structure and geometry is not well understood, sampling is orientated to be perpendicular to the general strike of stratigraphy and/or regional structure.
Sample security	<ul style="list-style-type: none"> The measures taken to ensure sample security. 	<ul style="list-style-type: none"> All samples remain in the custody of Company geologists and are fully supervised from point of field collection to laboratory drop-off for secure transport to registered laboratories.
Audits or reviews	<ul style="list-style-type: none"> The results of any audits or reviews of sampling techniques and data. 	<ul style="list-style-type: none"> New data is industry best practice sampling techniques and laboratory procedures. Current practices are well established and quality control data regularly reviewed.

JORC 2012 Edition - Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	<ul style="list-style-type: none"> <i>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</i> <i>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</i> 	<ul style="list-style-type: none"> The four tenements that make up the Central Otavi Project are owned by Metalex Mining and Exploration Pty Ltd (Metalex). Golden Deepes Ltd purchased 80% of Namex Pty Ltd, the Australian holding Company of Metalex. The four Metalex tenements are as follows: <ul style="list-style-type: none"> - EPL8548: (Kaskara) granted 1/08/2023 to 31/07/2026 - EPL8547: (Khusib North) granted 21/12/2022 to 20/12/2025 - EPL8546: (Nosib West) granted 21/12/2022 to 20/12/2025 - EPL8643: (Abenab NE) granted 21/12/2022 to 20/12/2025 The tenements are in good standing and renewal of the tenements at expiry by the Namibian Government is expected as they are in their first term. The Company already operates in the region and the Otavi Mountain Land is an established mining and exploration area. Exploration is subject to Environmental Compliance Certificates are in place for these tenements as well as landholder access agreements.
Exploration done by other parties	<ul style="list-style-type: none"> <i>Acknowledgment and appraisal of exploration by other parties.</i> 	<ul style="list-style-type: none"> The majority of historical exploration was carried out by Sabre Resources Ltd between 2007 and 2021. Sabre carried out extensive soil sampling programs (pXRF analysis), electrical geophysics programs (IP and EM) and in selected prospect areas, including Border, Driehoek and Kaskara, trenching and channel sampling, and reverse circulation (RC) and diamond drilling (see prospect locations, Figures 1 and 5). The work by Sabre generally represents standard industry practice and will be the subject of ongoing review and assessment. Goldfields Ltd also carried out geochemical and geophysical programs as well as selected drilling from 1981 to 2006 – including of the shallow portions of the Border deposit. Goldfields conducted a shallow 21-hole percussion drilling program at Border (10m depth) in an attempt to define easily mineable shallow mineralisation. Goldfields also carried out trenching and diamond drilling of the Driehoek deposit. Further information on location and sampling is required for this work. Exploration was also undertaken by previous holders Etosha Minerals (1969-1981). Etosha

		<p>carried out diamond drilling as well as resource estimates and metallurgical test work on the Border deposit. A total of 23 diamond holes were completed. Further information on location and sampling is required for this work.</p> <ul style="list-style-type: none"> • Eland Exploration Ltd carried out diamond drilling at the Driehoek prospect in the 1970s and produced several intersections. Insufficient data is available to report these intersections in compliance with JORC 2012. • Previous exploration in Area 6 was limited to soil sampling by Goldfields and by Sabre Resources who carried out pXRF analysis of samples. Insufficient quality control data is available to allow reporting of this information.
Geology	<ul style="list-style-type: none"> • <i>Deposit type, geological setting and style of mineralisation.</i> 	<ul style="list-style-type: none"> • The tenements held by Metalex are located in the Otavi Mountain Land (OML) District of Namibia (see Figure 5). • The OML is located in the Northern Platform Zone of the east-northeast striking intracontinental branch of the Damara Belt, at the southern margin of the Congo craton. The Damara Belt is a regional mobile belt of Pan African age, between 1,000Ma and 250Ma, consisting of complex rift spreading and compressional events. The sediments in the OML are mainly shallow water carbonates and siliciclastic rocks of the Neoproterozoic Damaran Supergroup. • There are in excess of 600 mineral occurrences in the OML, including the renowned Tsumeb and Kombat copper mines. Based on their geometry, geochemical and Pb-isotopic characteristics, previous have grouped these deposits into two different types of primary deposits. The pipe-like structure of the Tsumeb-Type (Cu-Pb-Zn-Ag +/- Sb, Ge, Ga) and the stratabound Berg Aukas-Type (Pb-Zn-Ag) are the best-known examples of these deposits. • The deposit types have been described as Mississipi Valley Type, carbonate hosted deposits formed during early basinal fluid migration. However recent authors have generally attributed the mineralisation to an orogenic setting, with mineralisation associated with extensional then inverted fault zones and deposition of metals in solution breccias and vein networks. • The OML is also host to secondary, non-sulphide deposit types associated the Pb-Zn vanadate descloizite and/or the Cu-Zn vanadate Mottramite. The Abenab vanadium deposit is the largest known example of this type of deposit. The formation of the vanadates is related to a secondary overprint by circulation of slightly heated meteoric fluids took place during a phase of deep continental weathering in the late Cenozoic. This circulation fostered the formation of supergene

		<p>Pb-Zn-Cu vanadates in post-Damaran karst fillings, solution collapse and tectonic breccias.</p> <ul style="list-style-type: none"> The Border deposit and the Driehoek deposit are examples of Berg Aukas-Type (Pb-Zn-Ag) deposits. Border occurs on the Pavian Trend which includes a number of evenly spaced Zn-Pb-Ag sulphide deposits and prospects which are generally stratabound but also show characteristics of fault control. The Kaskara deposit, as expressed at surface, is a series of secondary, non-sulphide vanadate breccia hosted deposits, associated with the V-Pb-Zn vanadate descloizite and/or the V-Cu-Pb vanadate Mottramite. The vanadate deposits in the OML generally form above or in the vicinity of primary sulphide deposits which may be of the Tsumeb (Cu-Pb-Zn-Ag) type or the Berg Aukas (Zn-Pb-Ag) type. Area 6 geology is predominantly Abenab (Otavi) Group carbonate rocks (dolomite and limestone/marble with siliciclastic layers and some arenite / sandstone and peilt layers). Significant faulting has been observed, sub-parallel to the predominantly eastnortheast-westsouthwest trending stratigraphy. Cross faulting is also evident and the largest mineralisation occurrences are associated with these fault zones. The style of mineralisation encountered at Area 6 includes gossanous iron-oxide with breccia fabrics and relict sulphide textures as well as secondary malachite and azurite (copper-carbonate) mineralisation. Sulphide outcrops have also been logged, and include sphalerite, galena and lesser chalcopyrite as clots, veins and massive sulphide lenses.
<p>Drill hole Information</p>	<ul style="list-style-type: none"> A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: <ul style="list-style-type: none"> easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	<ul style="list-style-type: none"> Appendix 1 includes all drillhole locations and other details. Appendix 2 contains geological descriptions of mineralisation encountered in the drilling.

Data aggregation methods	<ul style="list-style-type: none"> <i>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated.</i> <i>Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</i> <i>The assumptions used for any reporting of metal equivalent values should be clearly stated.</i> 	<ul style="list-style-type: none"> Results of drilling not yet received or reported.
Relationship between mineralisation widths and intercept lengths	<ul style="list-style-type: none"> <i>These relationships are particularly important in the reporting of Exploration Results.</i> <i>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</i> <i>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known').</i> 	<ul style="list-style-type: none"> The drillholes are drilled orthogonal to the strike of the mineralised strutures. Drillholes are drilled at -60 degrees and mineralised structures are generally steeply dipping. Intersection thicknesses are approximately 50 to 80% more than true-widths.
Diagrams	<ul style="list-style-type: none"> <i>Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.</i> 	<ul style="list-style-type: none"> Figure 1 is a plan of the Central Otavi Project Tenements with key prospects, mineralised trends and Target Areas. Figure 2 is a plan of the extended Target Area 6 including Graceland Prospect with rockchip sample grades shown as variable size grade ranges for copper and soil samples shown as variable colours grade range contours with corridor outlines. The locations of channel sampled zones and drillholes is also shown. IP-Resistivity lines are also shown. Figure 3 is a cross section showing channels and drillholes through Gossan 1.
Balanced reporting	<ul style="list-style-type: none"> <i>Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.</i> 	<ul style="list-style-type: none"> Appendix 1 includes details of the drillhole locations and Appendix 2 mineralisation descriptions. Results have not yet been received or reported from the drilling samples.
Other substantive exploration data	<ul style="list-style-type: none"> <i>Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.</i> 	<ul style="list-style-type: none"> In order to identify sulphide-mineralised target zones at depth, the Company has completed its Induced Polarisation and Resistivity (IP-Res) Survey across the 2.5km strike-length and 1km wide Graceland mineralised corridor. The survey initially included 19, 100m spaced 1km long pole-dipole lines. A further 7, 50m infill lines were completed across the eastern part of the Gossan 1 corridor where IP chargeability – low resistivity anomalies have been identified, associated with and east-west

		<p>rending mineralised fault corridor which includes the high-grade Gossan 1 and Gossan 1 East outcrops (see Figure 2).</p> <ul style="list-style-type: none"> Survey Specifications and Data Collection Parameters: <table border="1" data-bbox="917 332 1489 1125"> <tbody> <tr> <td>Array</td><td>HIRIP (modified high resolution Pole-Dipole)</td></tr> <tr> <td>Receiver electrode spacing</td><td>10m</td></tr> <tr> <td>Number of receiving electrodes</td><td>96</td></tr> <tr> <td>Line length</td><td>950m (length on ground following topography)</td></tr> <tr> <td>Investigation depth</td><td>Approximately 250-300m</td></tr> <tr> <td>Transmitter electrode spacing</td><td>20m</td></tr> <tr> <td>Offset between parallel transmitter and receiver line</td><td>Approximately 50m</td></tr> <tr> <td>Number of profiles</td><td>20</td></tr> <tr> <td>Total profile length</td><td>Approximately 950m</td></tr> <tr> <td>Measuring parameter</td><td>Chargeability (IP) and resistivity</td></tr> <tr> <td>Daily production rate</td><td>Approximately 950m/day with 10m electrode spacing (Progress is dependent on field conditions)</td></tr> </tbody> </table> <ul style="list-style-type: none"> The results of the IP-Res survey are being independently reviewed by Barry Bourne of Terra Resources, who is recognised as having particular expertise in IP-Res surveys and targeting. Field geological/structural mapping profiles will be completed across IP chargeability - (low) resistivity anomalies to determine stratigraphic vs mineralisation anomalies and structural orientation. Following the review and field checking, 3-d modelling of IP-chargeability and Resistivity anomalies of interest will be carried out prior to integration with rockchip, channel and shallow drilling data - to generate 'Tsumeb-type' Cu-Ag-Zn-Pb-Ge-Sb bearing sulphide drilling targets. 	Array	HIRIP (modified high resolution Pole-Dipole)	Receiver electrode spacing	10m	Number of receiving electrodes	96	Line length	950m (length on ground following topography)	Investigation depth	Approximately 250-300m	Transmitter electrode spacing	20m	Offset between parallel transmitter and receiver line	Approximately 50m	Number of profiles	20	Total profile length	Approximately 950m	Measuring parameter	Chargeability (IP) and resistivity	Daily production rate	Approximately 950m/day with 10m electrode spacing (Progress is dependent on field conditions)
Array	HIRIP (modified high resolution Pole-Dipole)																							
Receiver electrode spacing	10m																							
Number of receiving electrodes	96																							
Line length	950m (length on ground following topography)																							
Investigation depth	Approximately 250-300m																							
Transmitter electrode spacing	20m																							
Offset between parallel transmitter and receiver line	Approximately 50m																							
Number of profiles	20																							
Total profile length	Approximately 950m																							
Measuring parameter	Chargeability (IP) and resistivity																							
Daily production rate	Approximately 950m/day with 10m electrode spacing (Progress is dependent on field conditions)																							
Further work	<ul style="list-style-type: none"> <i>The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling).</i> <i>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</i> 	<ul style="list-style-type: none"> Lightweight man-portable drilling will continue to test identified gossans and sulphide outcrops / subcrops. Based on initial discussions with Namibian-based drilling contractors, suitable larger-scale drilling rigs have been identified which can access the hilly terrain to test below the shallow drilling of most significant high-grade gossan and sulphide outcrop areas. Drilling will also be required to test IP/Resistivity targets up to 250m below surface in the first phase. Drilling of the identified high-grade (Cu, Ag, Zn, Pb, Ge) sulphide targets is planned to 																						

		<p>commence after receipt of the channel-sampling and IP/Resistivity geophysical results and modelling, and once drill targeting is completed</p> <ul style="list-style-type: none">• Landholder access agreements are in place, and access tracks to the main gossan and sulphide occurrences established, so that further work can be progressed as rapidly as possible after geophysical programs.
--	--	---